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ABSTRACT

This document presents a comprehensive analysis of the
LAMDA (Learning Algorithm for Multivariable Data Analysis)
method, an artificial inteligence tool that can work on
supervised and unsupervised learning tasks. Initially, the
study focuses on identifying the weaknesses of the algorithm
to propose extensions to improve its performancg, We
propose LAMDA-HAD for classification and LAMD& for
clustering. The two extensions improve the p ré) ance of
the original LAMDA since they correct the gnment of
objects to the class or group that they y belong to.
Additionally, in the case of unsu d learning, the
groups can be merged automatiggl when necessary,
improving the quality of the clusighng with a more efficient
process of information discove@ e proposals have been
formalized and validated @ih different benchmarks that
have made it possibl o) study the performance of the
proposed extensions¥apnt carry out a comparative analysis
against other well{f:a\/vn algorithms.

In a second s@@g8, we formalize LAMDA in the context of
control ﬁws taking advantage of its capacity to detect
Jahsta

functio tes of systems. LAMDA working as controller
requifes’an initial phase of class definition corresponding to
tui nctional states of the system (training), and a second
phase of definition of fuzzy rules to obtain the control action.
In addition, because itis mainly a classification algorithm, in
this work we formalize an inference method based on
LAMDA to compute the controller output that allows taking
the system from the current to the desired functional state.
To demonstrate the stability and robustness of the control
algorithm, LAMDA is combined with the concept of Sliding-
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Mode Control (SMC). The novelty of this proposal is that
LAMDA is used to compute the continuous and
discontinuous control actions of the SMC to obtain a
chattering free control action. This controller, called LSMC,
can be applied to SISO systems with variable dynamics and
model uncertainties. Additionally, the concepts of Z-
numbers have been added to the LSMC scheme to handle
reliability criteria in the algorithm, in order to imp’r:oo@ the
performance of the controller. {\

Finally, since LSMC requires the expert kn ge for the
design, a different controller-based on LA is proposed,
this is the adaptive LAMDA Micx%presented as an
addition to this work. The novelty ofdhiS proposal is that for
the first time LAMDA is used for modeling and control
of complex systems, which is at advantage if the model
is not available, is parti Ily&kn wn, or variable. Adaptive
LAMDA consists of a g stage to establish the initial
parameters of the ller, and an application stage in
which the control Qegy is calculated and updated through
online learnin evaluates the closed-loop system.

The propo LAMDA controllers have been validated in
differe e studies, for example, in the control of industrial
procgsses with variable dynamics or in the field of robotics

jectory tracking control whose results have been
analyzed and compared with other similar control
techniques, showing that the proposed methods are capable
of performing a precise control that improves the
performance of the overall system.

KEYWORDS: LAMDA, Inteligent Control, Classification,
Clustering, SMC.



RESUMEN

En este documento se presenta un amplio analisis del
método LAMDA, herramienta de la inteligencia artificial que
puede trabajar en tareas de aprendizaje supervisado y no
supervisado. Inicialmente, el estudio se centra en identificar
los puntos débiles del algoritmo para plantear extensiones
gue mejoren su desempefio. Nosotros propopemos
LAMDA-HAD para clasificacion vy LAMDA-R{b para
agrupamiento. Estas dos extensiones @o an el
desempefio de LAMDA original ya orrigen la
asignacion de objetos a la clase o gruggﬁe realmente
pertenecen y adicionalmente, en el ¢ e aprendizaje no
supervisado, los grupos puedan ymirse automaticamente
cuando es necesario, mej l"%Lo la calidad del
agrupamiento con un proc de descubrimiento de
informacién mas eficiel&&Es as propuestas han sido
formalizadas y validad% n diferentes “benchmarks” que
I

han permitido estudh rendimiento de las extensiones
propuestas y su r&im analisis comparativo

En una segun@ tapa, nosotros formalizamos LAMDA en
sistemass @» control, aprovechando su capacidad de
detecc%@de estados funcionales. Para que LAMDA
funci@pe’ como controlador, requiere una fase de definicion
d&%éses gue son los estados funcionales del sistema y la
definicién de reglas difusas para obtener la accion de
control. Ademas, al ser un algoritmo de clasificacion, en este
trabajo es formalizado un método de inferencia que permita
calcular la salida del controlador que permita llevar el
sistema del estado funcional actual al deseado.

Para demostrar la estabilidad y robustez de la propuesta del
algoritmo de control, LAMDA es combinado con el concepto



de Control en Modos Deslizantes (SMC). Lo novedoso de
esta propuesta es que LAMDA es usado para calcular las
acciones de control continua y discontinua del SMC para
obtener una accion de control libre de “chattering”. Este
controlador, llamado LSMC, puede ser aplicado a sistemas
SISO con dindmica variable e incertidumbres en el
modelado. Adicionalmente se ha afiadido los conceptos de
ndameros Z al esquema LSMC para manejar crit l@ de
confiabilidad, para mejorar el desempefio del co dor.

Finalmente, ya que LSMC requiere el co iento del
experto para el disefio, se ha planteado esquema de
LAMDA adaptativo. Lo novedoso de g@propuesta es que
por primera vez se utiliza LAMDA para modelado difuso y
control de sistemas complejos, ﬁ | es una gran ventaja
si el modelo no esta disponible%s parcialmente conocido o
variable. LAMDA adapt t'k\@, onsta de una etapa de
entrenamiento para es er los parametros iniciales del
controlador, y una e de aplicacion en la que se calcula
y actualiza la estr a de control mediante un aprendizaje
en linea que € el sistema en lazo cerrado.

Los cont;ol@ores LAMDA han sido validados en diferentes
casos tudio, por ejemplo, en el control de procesos
indlié? es de dindmica variable o en el campo de la
oRBiica para control de seguimiento de trayectorias cuyos
resultados han sido analizados y comparados con otras
técnicas de control similares, demostrando que los métodos
propuestos son capaces de realizar un control preciso que
mejora el desempefio del sistema en general
PALABRAS CLAVE: LAMDA, Control Inteligente,
Clasificacién, Agrupamiento, SMC



1. INTRODUCTION

In recent years, control theory has proposed several control
strategies, as well as different methodologies, for the design
of control systems based on the available information. Most
control methodologies are based on a common foundation,
such as having information about the behavior of the plant,
either in the form of an analytical model, plant kng ge,
and mathematical approximations among others.,(\

At the end of the last century the idea of "Int t Control"
has been proposed, which is originated the aim of
applying artificial intelligence to contr. l(ystems. The main
reasons why it has been necessapy t0 design controllers
based on techniques inspired by@%gent faculties are [1]:

e In process control, aut éa)n means that the control
system replaces the n operator, which requires a
great capacity in *’banaging the knowledge of the
process. Inthis é&e intelligent control offers innovative
solutions, si it allows us proposing methodologies to
automaticaﬂb erform some tasks that are typically
perfor;m{& by humans, based on a priori knowledge.

. ~ontrol  of systems with highly non-linear
racteristics is a research field under development, in
”‘ki\fnich there are requirements that cannot be met with
conventional control theory. Mainly, due to the complexity
that exists in modeling [2,3], the controller design
requires a great effortif an analytical treatment is carried
out, so a more heuristic treatment can be considered.

e Due to the existence of increasingly complex systems
with a high degree of uncertainty, which generally cannot



be modeled in a strict mathematical way, the artificial
inteligence through its learning methods is a very good
option to obtain approximations that facilitate the design
of control systems that operate under uncertain
conditions.

Specifically, the design of "“intelligent controllers" has been
proposed with the aim of simulating the "intelligent" akjlities
of living beings, in particular, human reasoning Jdb do
this, controllers must include characteristics\such as
knowledge representation, learning, and r%tgﬁng under
uncertainty.

With current computers, powerful iﬁ\%ir functionalities,
artificial intelligence techniques ha@been used to achieve
some of these objectives, givin initial results, intelligent
autonomous controllers [4]. Théé:is of great importance to
continue with the analy new techniques of artificial
inteligence, capable o&roving the performance of the

initial intelligent co rs, viable in their implementation, in
order to be a u alternative applicable to solve control
problems in s s with a high degree of uncertainty.

In gene,r@ the field of control systems, information of the
proce, NG be controlled is required. The value of the
]igé tion depends on its usefulness for decision-making.

example, information that indicates that a person is sick
encourages them to take a control action, in this case, take
a medicine. Information that does not generate an action is
meaningless, while many actions are meaningless without
the underlying information to justify them [5]. In this way, the
link between information and control can be clearly seen. On
the other hand, the information of the changes in physical



systems can be recorded by sensors (data collection). By
linking the recorded data, with the control actions, then
knowledge is generated. For example, the human body
temperature must be at 37 °C; if an individual has a higher
temperature, then the individual is considered sick. The link
to this information (the conclusion) is based on our prior
knowledge. The process of extracting knowledge from the
data is known as Data Mining [5]. ‘«O{b

Feldbaum's dual control concept states that con@lﬁnust not
only lead, but must also learn [6]. Bas this, an
inteligent control system is one that co es a serie of
techniques, fundamentally taken frorxaéificial intelligence,
with which it is intended to solve upapproachable control
problems by classical methods . For this, the control
system bases its operation o&‘gnitive activities such as
learning, inferring, optimi ,¥ reasoning and decision
making, which often de '&gm unpredictable behaviors of
the systems to be ¢ ‘(a'ed. Thus, an intelligent controller,
based on artifigl) inteligence techniques, can be
autonomous, inear, and adaptive [3].

The majn ason for the development of intelligent
controgis the existence of incomplete or inadequate
repr ations of the plants and imprecise specifications.

ticular, environments with uncertainty can make the
controller, and therefore the plant, unstable, which would be
extremely risky in all processes. Currently, intelligent control
methodologies are very varied, and include fuzzy logic [7] ,
expert systems [8], artificial neural networks [9], evolutionary
programming [10], among others. These methods have
been used in control tasks, fault detection, plant supervision,
and other areas of application.



One of the most used intelligent techniques in the field of
control is fuzzy logic. Within the fuzzy control, there are two
widely used applications: modeling and control. Compared
to traditional control, fuzzy methods have three practical
advantages [1]. Firstly, the mathematical model of the
process to be controlled is not required. Second a non-linear
controller developed empirically without mathematical
complications can be obtained, and finally, fuzzy @ods
can learn about the model of the plant to compute Qg'éontrol

action. s\Q‘;

The machine learning method called L&A (Learning
Algorithm for Multivariable Data Analy$is) [11], is a non-
iterative technique based on fuzz ?c%% It has ability to
create new classes after the trainj yQ’:\ge, using a threshold
known as the Non-Informative s (NIC). LAMDA has the
ability to work in the con x@of lassification and clustering
[12], tasks that have focused on the detection of
functional states of ms. To learn, it uses probability
density functions € the similarity analysis, and fuzzy
aggregation @IOHS [13] to determine the current
teMof

functional the system.
4

Startin @n the detection of functional system states, it is
prop a novel approach in this work to convert LAMDA
m‘? controller. For that, it is necessary to establish an
inférence mechanism that allows it to take the system from
a current functional state to one desired, which is defined
through the descriptors that are characterized by the
designer for the controller implementation. Systems with
variable dynamics and model uncertainties, in which
conventional controllers decrease in performance terms are
the field of application of the control based on LAMDA.



1.1 Research motivation and justification

Intelligent controllers have the ability to present a good
performance (in terms of energy consumption, robustness
disturbance rejection and system response) in systems in
which obtaining their mathematical model is complex. The
complexity of the models may occur due to highly non-linear
characteristics, to the scarce information available frog the
system, or due to uncertainties. In this sers? the
development of new proposals or methodologj Qat allow
us controlling systems with these charac ?’(‘:s always
represents a research area with theoreti and practical

projection. \(z}

Since the conception of this res@h work, it has been
proposed to take advantage of{@ aracteristics of LAMDA
for the formalization of ngw“gontrollers. In this sense,
LAMDA have the advant@of learning and identifying the
functional states of m, which could be used to take a
corrective action to g the plant to a desired state. Being
a fuzzy algorith ‘We propose to establish a control guided
by the operati&states and to propose the control law that
guides t Qstem to the desired state considering uncertain
informaligeY The operation of the controller in uncertain
sys as led us to explore extensions of fuzzy logic such

umbers, in order to address the reliability criteria that
could help to handle the uncertainties inherent to the system.
With the aforementioned arguments, it is proposed to
investigate and formalize the design and implementation of
controllers based on LAMDA, with the ability to adapt and
learn to characterize the functional states of the system, to
take corrective action.



1.2 Hyphotesis

It is possible to propose an intelligent controller® based on
artificial inteligence techniques related to pattern
recognition; in this case, functional states of the system to
be controlled, with the LAMDA algorithm. The controller can
be designed without the need to have the plant model in
detail, which can have non-linear characteristics. {&

1.3 Main and Supplementary Object@%%

é‘\%

According to the above discussion, th\@in objective of
this research work is:

“To formalize controllers based Qz&he LAMDA fuzzy
model”.

1.3.1 Main Objective

1.3.2 Supplementary O¥bjectives

e To formalize an {gement extensions to the LAMDA
model, which, ifaprove performance in machine learning
tasks corrgﬁwding to classification.

e To [o@ze and implement extensions to the LAMDA
mo@?k ich improve performance in machine learning
@k corresponding to clustering.

o zilo determine the most suitable LAMDA model for the
implementation of intelligent controllers.

1 Note thatin the research plan the developmentofan intelligent controller based on
LAMDA has been proposed, however throughoutthe research, several proposals of
LAMDA-based controllers have been developed which are detailed in this document



e To propose a methodology for the design of LAMDA
controllers, and analyze their stability, robustness and
disturbance rejection.

e To optimize the LAMDA controller? parameters using
evolutionary optimization heuristics (offline).

e To evaluate the proposed LAMDA controller? in
processes with non-linear characteristics and rast
the results with fuzzy controllers wi imilar

characteristics. &Q‘;

e To explore the feasibility of implem g Z number
theory in the LAMDA controller? to@l with ambiguities,
observing if it contributes to impreving the performance
of the controller and if it is ap%{a%e in terms of machine
time consumption. Q

1.4 Scopes of th search

The research propoé@ e achievement of several scopes
addressed by dif t approaches. As mentioned in the
introduction, I@A is applied in the field of classification
and clusterj sks, in which it is proposed to improve its
perform (& with different extensions. Also, the algorithm is
used j#rthe field of control systems, establishing the bases

{design, and its formalization in terms of stability and

fox &
?’ggustness. The detailed scopes reached in this work are:

e Extensions to the LAMDA model have been developed in
order to improve its performance in classification tasks.

2 The supplementaryobjectives refers to a LAMDA controller, however, as mentioned
above, several proposals have been developed and the methodologies described
have been appliedto the controller thatwe consider to be the mostcomplete in terms
of stabilityand robustness.



The formalized extensions are implemented for using as
a supervised learning algorithm, and are tested in
different types of benchmarks.

Extensions to the LAMDA model have been developed,
in order to improve its performance in clustering tasks.
The formalized extensions are implemented for using as
an unsupervised learning algorithm, and are tested in
different types of benchmarks. (‘9

A LAMDA model has been proposed for l@ncepﬂon
of an intelligent controller.

A methodology for the design of L%B%QA controllers has
been proposed, to be applied |t ferent systems.

Once the LAMDA controlle ‘Fﬁbdel has been proposed,
an evolutionary optimiz @ngonthm has been used for
its calibration to mpro@ performance.

Possible enhanc ts to the LAMDA controller have
been explored {Qandle ambiguous contexts, based on
the conce -numbers.

The ¢ Q\plete model of the controller has been
es ed, laying the foundations for possible future

pments on it, so that it can be applied to any type
\l automatic system.

The controller has been implemented and tested in non-
linear processes.



1.5 Main Contributions

This work presents different proposals of LAMDA-based
extensions for classification /clustering tasks and controllers,
whose main contributions and novelties are the following:

e The theoretical formalization of the improvements to
LAMDA in classification and clustering tasks.

e The theoretical formalization of controllers b on
classes or functional states, concepts take m the
LAMDA theory, which have a number d\%ed layers
(intrinsic feature). Therefore, the n is more
straightforward than methods wh he number of
internal layers must be calibal [53]. Also, the
characterization of controller (\ ng the class criteria
leads to a quick converger& a desired output based
on definition of rules o Q&Uﬁ learning.

e The design of a t LSMC controller where the
continuous andgftontinuous control actions of SMC
schemes ar;ig;%‘\ puted using the LAMDA method to

obtainac ing-free control action.
e The stability analysis of LSMC controllers is addressed in
or guarantee the convergence of the system output

fds the desired output.

:&I'he implementation of LAMDA as an identifier for
modeling and controlling process is proposed (called
Adaptive LAMDA) for the first time, handling the concept
of self-adjustment of the internal parameters.

e The proposed learning process of Adaptive LAMDA is
based on a hybrid learning, which allows a quick
convergence to the desired output, improving the



learning time and preventing that solutions be trapped in
local minima. This is a great advantage over learning
methods that only work with gradient descent, which is
generally slow [14].

A stability analysis of the learning algorithm is proposed
to guarantee a rapid convergence of the estimated output
towards the desired output. {&

The computational complexity of the main\q@posed

controllers is analyzed in terms of spatial temporal
complexity.
The feasibility analysis of the i mentation of Z-

numbers applied to the LAMDA ggj oller is studied.

The definition of Z-rules 5@3 on different reliability
values to modify the gomol action considering the
deviation between th&;}stem output and the desired
reference is propg:

A formal valid@ of all these improvements, in case
studies of@—linear characteristics, and contrast of
results withdther methods, is carried out.

4
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1.7 Thesis Outline
The remainder of this thesis is organized as follows:

In Chapter 2 a theoretical framework of LAMDA is
presented, detailing its fundamentals used for assigning
objects to classes/clusters, learning method, internal
parameters, and structure of the algorithm. Aditionally, a
review of the state of the art of the algorithm i ‘@de,
detailing the relevant literature in classificaé% and
clustering contexts, and the recent resea@advances
related with LAMDA. Q&

Chapter 3 presents the extensions o algorlthm in each
context raised in the objectives ofég heS|s Initially, it is
formalized the extension of LA ocused on supervised
learning, through the approacQ two improvements to get
a better performance. Fi proposed to calculate as
many Non-Informative ses (NICs) as the number of
classes, obtaining a ptive NIC. Then, it is proposed to
compute the Hi kel Adequacy Degree (HAD), which
improves the @nment of objects to their respective class,
reducing Et%ssification. In the clustering field, the
extensioﬁ&/\DA—RD is formalized in order to enhance the
calcujafion of the internal parameters of LAMDA and the
i ntation of the automatic merge algorithm.

Chapter 4 presents the formalization of the different
proposals of LAMDA controllers, the inference mechanism
that allows obtaining the Rule-based LAMDA controller, the
design of the LAMDA-SMC intelligent controller (LSMC) that
bases its operation on the concepts of Sliding-mode control
to guarantee robustness and stability through Lyapunov
theory. Next, the combination of the LSMC controller with the

14



Z-number theory is detailed to consider reliability criteria
(ZLSMC), and finally, the Adaptive LAMDA proposal for
modeling and control of systems is presented, which bases
its operation on online learning.

Chapter 5 presents the experiments and some of the most
relevant results of the LAMDA-HAD and LAMDA-RD
extensions. It also presents the detailed results the
application and design of the Rule-based LAMDA{& MC,
ZLSMC and Adaptive LAMDA controllers, whic \a,% tested
in different case studies, validating the feﬁ‘ﬁ%v of their
implementation, and the contributions t@ ese present
when are used in the control of system{b

Chapter 6 details the discussion e results obtained in
the experimental stage, carryin & an in-depth analysis of
the advantages and disadvantages of the proposed
methods, and addressin %comparative analysis of the
LAMDA control with re& to other control methods.

Finally, Chapter summarizes the most relevant
conclusions $ ed from this work, and provides
fofu

suggestion rther research.
4
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2. THEORETICAL FRAMEWORK

Classification for monitoring systems is a method where the
learning process is carried out through a controlled training
by an external agent (supervisor), which defines the
response that an algorithm should generate from one or
several determined inputs. In other words, it is a method to
make a machine learn from the expertise, to take degisions
based on the characteristics, categories or cIaSéZfis of
interest of a given application [15]. In the litera, @)\t ere are
different approaches applied to classific , such as
instance-based methods, decision tree ed methods,
kernel-based methods, neural nelwq{@rbased methods,
among others [16,17]. These meth are used in several
applications, such as business,ég,é medicine [19], fault
detection [20], functional st@ detection in industrial
systems [21], etc. >

On the other hand, clu§ering, is useful in problems where
unlabeled data is le [22]. The aim of clustering is to
separate data i artitions with elements that have similar
characteristic&tween them. Each cluster must be
separable Q’d compact, with respect to another cluster [13].
In the "s@ure there exists different clustering approaches,
S0 f them are distance-based [23], partitioning

ring, hierarchical clustering [24], density-based [25],
fuzzy logic-based [26—-29], or Gaussian methods [30],[31],
among others. All these techniques depend on a previous
stage of descriptor extraction, which are later used for the
individual-cluster assignment performed by the algorithm.
Historical data and streaming data [32] are application
scenarios of the clustering techniques, but not all the
methods can work in both contexts because the data is
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obtained differently. In the first case, the complete database
is available, while in the second case, new data arrives
continuously. The importance of working in the context of
data streaming is that the evolution patterns provide useful
information, which can allow users to make immediate and
correct decisions [33]. In classical clustering, data is
assigned to one cluster; on the other hand, fuzzy clustering

methods are based on the fuzzy membership ee,
therefore, an individual can be a member of sever sters.

21  State of the Art of LAMDA Q“\Q’

Classification and clustering methods t}ésg on fuzzy logic
are widely used in the field of macm learning [34—-40],
[13,41-44]. One of the method %at can work in both
contexts is LAMDA (Learning Qg@r m for Multivariate Data
Analysis), proposed in [11], whidd) is based on the calculation
of the Global Adequacy ee (GAD) that corresponds to
the membership degr one individual to a class, through
the contributions o its descriptors. These contributions
are calculated ugh fuzzy probability functions [45],
obtaining as the Marginal Adequacy Degree (MAD).
By mixing s of an individual, GADs are calculated using
fuzzy @&Zion operators, which are the membership
deg@e of the individual to each class. With this information

sible determining the current state of a system (class).

This algorithm can work in supervised and unsupervised
learning [46], and it is able to create new classes after the
training. The decision to create a new class is based on a
threshold known as the Non-Informative Class (NIC). The
algorithm compares all the GADs, including the GAD of the
NIC, and assigns the individual to the one that has the
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highest value. If the GAD of the NIC has the highest value,
a new class is created, otherwise the individual is assigned
to some class. Due to the mentioned features, LAMDA stand
out over other fuzzy classification algorithms.

Although the LAMDA feature of generating new classes can
be very useful, there is a limitation on certain applications
due to the handling of a single NIC for all classes begause
this parameter is not adaptable to each of them. &can
cause individuals to be assigned to the NIC api\therefore
produce a new class; this occurs especj when the
descriptors of the individuals have high le f uncertainty
(noise) intra-class [45]. Aditionall e presence of
descriptors that do not adequately terlze an individual
can produce misclassification cause the algorithm
ignores the membership e with respect to all
individuals of the classes; abpdg%/ does with respect to the
center of the classes.

There are several ributions of LAMDA in the field of
machine learning&\ Thc luding: the detection of functional
states of a pllG&ulator [47]. In this work, the performance
among L,Ah(&A and neural networks is compared, and it is
determé"]a@that the precision of LAMDA is better in 66% of
the & rmed experiments. This algorithm has also been

n problems of fault detection in electrical distribution
networks [48], in which an average performance of 83% has
been obtained. In water plants [49-51] the algorithm is used
to identify the different functional states that describe the
behavior of the coagulation process. LAMDA has been
identified 8 functional states of normal and abnormal
functioning of the plant, allowing a constant monitoring of the
process. In the previous cases, the algorithm has worked
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online in unsupervised mode. In [21], it is applied for
monitoring complex industrial processes, combined with the
Markov's theory, which allows identifying the connections
between functional states through a transition degrees
matrix. In this case, the creation of new classes is not
considered. In Fault Detection and Isolation (FDI) cases, this
method has been tested in a two-tanks benchmark in the
detection of states for awoidance of dangerous o ébnting
condition, in increasing availability and productiv‘Q\ mong
other things [52,53]. In computer vision apg{@lons, this
method has been used as a search alg for image
recognition in supervised mode.

The versatility of the algorithm is e(zgnstrated, and its
performance is determined, ba: n tests with different
operators, such as fuzzy ability distributions and
aggregation operators [ %] ne of the most important
contributions of LAMD implementation in a software
for the supervision mplex systems. This software is
SALSA (Situation Asbessment using LAMDA classification
Algorithm), an& been used in applications such as those
presented @ ,56] for functional states detection.

4
Severa @difications to the original LAMDA have been
de by different researchers to improve the results
ed by the algorithm in classification and clustering.

In the classification context, the following contributions have
been proposed:

e T-LAMDA [57,58] is used in image processing, whose
method is less sensitive to noise than the original
algorithm, however it has not been tested in other fields.
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A hybrid method of LAMDA combined with genetic
algorithms has been proposed by [59]. The results are
analyzed to find the best parameters of compensation in
an optical spectrum, improving the performance but a
high machine time.

LAMDA-FAR [60], improves the recognition of functional
states of diesel engines. This method is based the
calculation of two thresholds used to make a \%&uion
in the assignment of an individual to a class stablish
the first threshold in each class, the diff e between
the maximum GAD value (greater in al ude) and the
minimum value of the second larg S’Q;-I-AD is calculated.
For the second threshold of eaga lass, the difference
between the minimum value e largest GAD and the
maximum value of the sec argest GAD is calculated.
With the two threshol it IS verified if the GAD of an
individual is within tl ranges to be assigned to some
class, otherwise ¥(I$"sent to the NIC. This method can
only be imple ed when in each class the first and
second G@o not overlap, because this would result
in negat resholds, which is not logical, and it does
not .pfdMde the information needed to improve the
classjlication process.

lqlgr‘e clustering context, the most important recent

contributions are:

“LAMDA Triple Pi () operator (LAMDA-TP)” [45,61]. This
operator isused in LAMDA as an aggregation function for
the computation of the GADs, awvoiding the creation of
new clusters with few individuals.
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o “LAMDA clustering method based on typicality degree
and intuitionistic fuzzy sets” [13]. The authors propose
the calculation of three functions: The Global Typicality
Degree (GTD), the Intuitionistic Global Adequacy Degree
(IGAD), and the Typicality and Intuitionistic Global
Adequacy Degree (TIGAD). This proposal is applied in
some study cases, presenting an adequate separation of
clusters.

The algorithms described above have some d acks in
the cluster formation. Inthe first case, LAM does not
depend on the exigency parameter a ( alized in the
original LAMDA), which allom%[(b calibrating the
permissiveness of the algorithm. }% her words, it is a
control parameter linked to t (q ality and number of
created clusters. LAMDA—TI% erforms the clustering
process based only on tl ‘@mi rity computed by the triple
7 operator, and the cannot calibrate the algorithm
partitons. LAMDA ed on intuitionistic fuzzy sets
improves the c@ring stage; however, in [13], a
comparison o& algorithm with respect to other similar
methods isQot’presented, and based on the results, it is
observecf®§a merge stage is required to group clusters of
simil aracteristics, to obtain better models. Aditionally,
th rmed partitions are not analyzed in terms of
Bbe}formance metrics, which allow evaluating their intra and
inter-cluster qualities.

2.2 LAMDA fundamentals

LAMDA is a fuzzy method, based on the concept of the
adequacy degree. Unlike conventional algorithms, it is not a
distance-based method, which performs a similitude
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analysis among descriptors of the individuals, in order to
establish a relationship between each one and its respective
class [62]. The membership degree of an object O to a class
C ={C;Cy...; Cp; ...; Cp} [11] is estimated in a non-
iterative process. The individual O is formed by a vector of [
descriptors [38]:

0 = [01;...;oj;...;ol] (2.1)
where o; is the descriptor j of the individual 0.
The descriptors are normalized in the ran en [0,1].
This normalization is done with respect to aximum and

minimum values of each descriptor, as@ovvn in (2.2).

in

@» Ojmin

where 0j,, is the mrr&} value of 0j, 0j,a,is the

(2.2)

maximum value o;and g e normalized descriptor.

2.2.1 Marginal acy Degree (MAD)

The MADs esta@ how similar a descriptor is with respect
to the same riptor in a given class. For a defined
individual, MAD vector is determined to characterize its
situati th respect to each class. For MAD calculation,
propghility density functions are used. The most common
a;k uzzy Binomial Function, and Gaussian function [60].

2.2.1.1 Fuzzy Binomial Function

This is a fuzzy extension of the binomial function that allows
calculating the membership degree, like a Bayesian
probability [58]. The function depends on p,; and o; as
follows:
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5, (1-9))
MADy; = p, ;% (1=pi;)" 7 (23)

where p, ; is the average value of the descriptor j that

belongs to the class k, and it is calculated for the case of
supervised learning using (2.4).

t=np,j

1
pej==— ) 5(®) (24)
ki t=1 >
where n, ; is the number of data of the descrip%o\@g())nging
to class k.
<&

2.2.1.2 Gaussian Function é

This function depends on three inpg%\(}lables Oy, j»Px,; and
0;and assumes a normal distribp?'/ﬁn of the descriptor and it

is computed as: Q
b{& _z(ﬁf‘f’k.f)z
DMAD, ;= 2\ ki (2.5)
where gy, ; is the ard deviation of the descriptor j that
belongs to the S k.
t=nk']
QO
O o= ) GO-p) @O
«63 L2 t=1

ossibility of finding MAD using (2.3), or (2.5), depends
on the data distribution in each class. Applying (2.3) for the
NIC, where the center is py;c = 0.5, thus the MAD,. = 0.5
for any value of the descriptor o;.

2.2.2 Global Adequacy Degree (GAD)

GADs establish the adequacy of the individual to each class,
which is calculated mixing MADs with aggregation functions.
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These functions are any of the tuples shown in the Table 2.1
and are computed recurrently. The exigency a €[0,1],
allows a strict or permissible classification [60]. If «
increases, the classification is stricter, therefore more
individuals will be unrecognized (sent to the NIC), making
the algorithm more selective [63]. The GAD of an individual
0 inthe class k is calculated as:

GAD, 5(MAD, 4, ...MAD,,) ,\6;&

= aT(MADy,, ..., MADy,) A\

+ (1 —a)S(MADy,, ..., MA (2.7)
where 0 is the normalized indiW%§ T is t-norm
(intersection), and S is t-conorm (UNioM)

Table 2.1. Aggregation fun}:&ig@?or LAMDA [64]

Type Agg@?fﬁon functions
8& T(a, b) = ab
\Afb- S(a,b) =a+b—ab

x\o\f{a, b) = ab

p+ (@1 —p)(a+b—ab)
S(a'b)=a+b—ab—(1—p)ab

,{\{\ 1—(1—p)ab
\d 1

029 (5
S(a,b) =1— = 2
p a
1+ () + ()

The object 0 is assigned to the class with the maximum
GAD, where index corresponds to the number of the class:

Product-Sum

Hammachepsq

& T(a,b) =
Q}

[uny

*p is the sensibility of the function
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index = argmaX(GADl'g, ., GADp, 5, GADN,C'Of) (2.8)

The stages of LAMDA operation are shown in Figure 2.1.
The MAD calculations are made for each descriptor in each
class, using the probability density functions presented in
(2.3) and (2.5). With the MADs, the calculation of the GAD
of each class is made using aggregation functions (block
"L”) and the exigency level "a". Finally, the ,class
corresponding to the higher GAD calculated the
individual o; is where it belongs to. If the higher, is the
GADy;, the individual is not recognized to ass and is
sent to the NIC to create a new class.

CLASS C,

Calculate MAD Calculate G
7 (t-norm andgo
A,

Normalized
Individual

max(GAD;3....,
GADy5 ..., GADyic5

Class Decision
(index)

[ MAD (Cuc.0) ]

MAD (Cic , 0

MAD (Cnic, Oy

\l@ Figure 2.1. Structure of LAMDA algorithm

In the works like [50,60,65] where LAMDA is working in the
classification context, in these papers we have been able to
observe that LAMDA has problems making a correct
classification, either because the NIC is constant for all
classes, or because the GAD calculation is unreliable. On
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the other hand, in the works like [13], [45], [58], where
LAMDA is working in the clustering context, is observed that
the number of created partitions does not correspond with
the number of desired clusters, which can be excessive or
impractical for the expert. Therefore, our contribution in the
next section is the formalization of extensions that improve
performance in both classification and clustering contexts.

2.3 Artificial Intelligence in the u\e@ of

>\

Control Systems &Q‘}
Nowadays, the artificial inteligence r&}allowed the
development of wvery powerful te ues, useful for
modeling nonlinear systems whos amics are complex
and unknown [66]. The dewvelo of these techniques

has increased considerably dQ the computational power
of the computers, allowi @e mplementation of learning
algorithms with high ac%/@ty and fast in processing terms,
considering the | ent uncertainty and changing
conditions of the s;é%ms [67]. Due to the versatility of these
methods, it is ible to perform offline and online system
modeling ,Mvhich are very useful in control schemes,
especiall@en the mathematical model of the system is
unkn \ﬁp\or variable. Specifically, in the case of online
e r@%‘; the main advantage is the adaptation to changes
mihe dynamics of the system to be modeled/controlled,
since it learns constantly the behavior of the process based
on the input and output data. Many of the applications
related to industrial processes, aeronautics, robotics and
power systems require the incorporation of artificial
inteligence into the control schemes, due to the adaptive
feature that it provides when the mathematical model is
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complex, unknown or inaccurate. The most used
approaches for modeling and control of systems are Artificial
Neural Networks (ANN) [69],[70],[9], Fuzzy Logic [71], and
the hybrid models between the ANNs and the Fuzzy
Inference Systems (ANFIS) [72], [73]. ANFIS is considered
as a universal approximator [74], with the ability to represent
any parameterized model. The adaptive neuro-fuzzy
inference systems (ANFIS) are schemes that c@bine
characteristics of both models (neuronal and qu&D\mm a
fixed structure of nodes and layers, using th ria of the
neural networks for the learning proces @perform the
parametric adjustment, showing excellep&%ults in different
application fields related to model and\ trol [75-79].

The aforementioned approach (g?e generally used in
schemes of Adaptive Invers ntrol (AIC). This control
methodology has been st dtgj r the last three decades, in
which different rese%}ers have made interesting
proposals, applied to@ own plant dynamics [80].

Fuzzy logic is eﬁgt for modeling systems. It is generally
rule-based an had a wide field of application in control

systems, f@litating the design of applicable nonlinear
controll rom simple systems to complex chaotic systems
[81 . Fuzzy logic has also been used in the design of

ased on the creation of rules whose parameters can
adapt automatically through learning criteria.

The neuro-fuzzy systems have also been developed in AIC
as presented in [83-86]. In these works, the authors have
been demonstrated that the proposed adaptive inverse
dynamics control scheme is effective to improve the control
performance of the system with uncertainties. In the
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literature, several works have made efforts to improve the
performance of neuro-fuzzy models through the use of
hybrid learning [72], self-tuning ANFIS based in genetic
programming [87], learning based on square-root cubature
Kalman filter (SCKF) or recursive least squares (RLS) [88],
or learning techniques that use input space partitioning
through sub-clustering for higher dimensional regression
problems (extreme learning [89]). {bf&

2.4 Z-Numbers

Zadeh [90] has proposed the Z-numbers, a @ensmn of the
fuzzy numbers composed of two elem bconstramt and
reliability, which are the ordered pair c?ff‘%zzy numbers. In a
Z-number, the first element is to characterize the
uncertain information, and th?a%cond element is used to
characterize the reliability (cQnfigence) inthe information. As
it is analyzed in [91], th fabilities of the fuzzy values of
the variables in the s\%}@rules are an issue in the modeling
of the fuzzy syste fecting the accuracy of the decision
making process, Ing into consideration the uncertainties
inthe process@ controlled, the concept of Z-number can
be more g @tively used for the design of control algorithms
in this aé the LAMDA controller.

C @?tly, Z-numbers are studied in different application
ﬂ'l}ds, such as: decision making, economics, optimization,
risk assessment, prediction and rule-based systems
characterization with imprecise information. Thus, one of the
applications is in the fuzzy reasoning to handle imperfect
information characterized by the combination of fuzzy and
probabilistic uncertainties in If-Then Rules systems [92]. The
idea of converting a Z-number in a classic fuzzy number
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without losing information is rather significant for many
applications. Kang et al. [93] present a proposal to solve this
issue based on the Fuzzy Expectation of a fuzzy set, through
a simple procedure that can be applied to triangular and
trapezoidal membership functions, but remaining open to
research the application in Gaussian functions.

recent development, Aliev [94] presents an initial pr al of
basic operations that allow the treatment {l}ncertain
information. Multi-criteria decision makin M) under
uncertain environments has been studied i —98], inorder
to take into consideration effic@ the reliability
information. Aditionally, the convergipn*from a Z-number to
a crisp number is useful in the decision making and
risk assessment. To do this work [93] proposes to
compute the centroid of t&yte val-valued of the fuzzy set
with the Karnik-Mend orithm. Z-numbers also have
been used for the s state detection, especially failure
modes in an aircigftturbine [99]. This paper demonstrates
the viability o Q proposed method using the reliability
criterion. Fi II}&the Total Utility (TU) of a Z-number [100] is
a new ,C&pt used to measure the total effects of a Z-
numbgfyand can be used to determine the ordering of Z-
g:g@gg with the aim to be applied in MCMDs under

ertain environments. The advantage of this method is to
be able to work with triangular, trapezoidal and Gaussian
membership functions, considerably expanding its field of
application, which could be used by LAMDA.

Due to the novelty of working with Z-numbers and bgﬁ'ng a

In the field of control systems, there are few works that have
focused their efforts on applying the concepts of Z-numbers
in the design of controllers. Recently, Abyev [91,101]
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presented the development of a fuzzy inference system
using Z-number for omnidirectional robot. In these works,
the fuzzy inference system is designed for the control of the
linear and angular speed of a robot soccer, independently.
The proposed Z-rules are an extension of the classical fuzzy
rules that consider the reliability of the constraint, but in all
the rules is used the same reliability (Usually) to compute
the control action. The inference method is b on
distance measures of fuzzy sets, which takes th cepts
of the a-cuts applied to the antecedent p ere the
deviation of the input signals from the fu&,values of the
variables are determined. The propQs controller is
validated and compared with ot fuzzy methods,
presenting interesting results. In [ , the same procedure
is applied for a dynamic plan& rol where the transient
response of the designed goroller is compared with the
transient response of &e\onventional fuzzy controller,
demonstrating the s @l ity of the designed system in
control of dynami nts. Finally, the authors of [103]
present the traj ry tracking of a wheeled mobile robot,
combining the'& straint and reliability in multi-input and
multi-outp (\ rules. The antecedent considers the
instantal s distance measurements and the orientation
gap d the consequent is computed by the interpolative

ing and the graded mean integration approach. The
authors highlight that this approach avoids the complexity of
encoding error gradients, and it is able to cope with missing
observations.

2.4.1 Z-numbers formalization

A Z-number is a pair of fuzzy numbers defined as:

30



Z = {(Az,R2)|u,,€[0,1], tg,€[0,1] } (2.9)

where Az is the restriction (constraint) on the values of the
observation x, and Rz is the reliability metric of the first fuzzy
number in the space of y. For simplicity Az and Rz are
considered Gaussian fuzzy numbers defined by a binary
(p,0), where p is the center of the function and ¢ is the width
of the function. As an example, Figure 4.8 sho the
membership functions of Az and Rz where it is ap ated
how the parameters p,o modify the position al ape of
the curve respectively.

6l g AZ(a) AZ*(c) f;'&
0.4 Q Rz (8 RzZ*(8)

0-’l 0.5 0 0.5 V OO 0.2 0.4 0.6 0.8 1
X \Q y
(b)
Figure 2.2. Me h|p functions of the Z-number Z = (Az, Rz)
with A auss(0.1,0.25), Rz = Gauss(0.6,0.07)
A convefional fuzzy if-then rule for two inputs and one

outpu{ be stated as:
QQ} IF 0,is FP and o, is S THEN y, is G, (2.10)

where F,, F, are fuzzy sets and G, =y, is a singleton
function (constant).

In the case of Z-numbers, it is convenient to express a
generalization of the basic if-then rule in terms of Z-
valuations as follows:

IF o, is (AzP,Rz) and o, is (AzJ,Rz])
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THEN y, is (v;,Ry)  (2.11)

where AzP,Rz?, Az],Rz},A;,,and R are the fuzzy sets of
the Z-number.

An example of the characterization of the Z-rules is: “If high
price of oil, likely, and high price of the refining process,
commonly, then high price of gasoline, very likely”.

As seen in the example, the application of Z-nu is
focused on modeling uncertain information fr e real
world. More examples of the real applications -numbers
are described in detail in [104]. In the e of control

systems there is a potential appli%n field of these
concepts that can improve the perfo;g e of the controller.

2.4.2 Total Utility of zgmmbers (TU)

TU is potentially useful to siggplify the Z-number applications
in decision making. The @1 tion of the TU is derived from
the format of Z-nu without subjective judgment as
stated in [100]. S simplification of the Z-numbers is of
great importam% en it is required to represent the
restriction an metric reliability in a single parameter,
which c’aée\useful in the design of intelligent controllers.

The @edure to compute is detailed as follows: let the
‘n&@matical expressions of the membership functions for
Az"and Rz defined as [100]:

4(@)2 _1(m)2
ba,(X)=e 2 or) 5 pp,(y)=e 2\ oz (212)
where —1 < p, < 1is the position of the center of the peak

of the curve p,,(x) and o; > 0 isits standard deviation used
to control the width of the bell, 0 < p, < 1is the position of
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the center of the peak of the curve ug,(x) and g, > 0 isits
standard deviation.

If the a-cut, « = p,,(x), then x is computed as:

x = p,t+—20.%na;
Az~ (@) = p, =+ —20,%lna; Az* (a) = p, + /—20,%lna (2.13)
If the B-cut, B = ug,(y), then y is computed as: :2}.
Yy = ppt—20,%Inp; <\

Rz™(B) = p, —V—20,*Inf;Rz* (B) = p, + 2B (2.14)
The TU of a Gaussian Z-number is con@ as [100]:

TUZ) = TU(AzRZ) = f f f 1;35(_%2

[Az (@) + Az* ()
2
{ [RZ (ﬁ)+Rz+(ﬁ)

+ x(Az" (& ar))] ezt (@-az" (@)
}%%’) Rz~ (ﬁ))] Rz+(/i) Rz (B)
0 (2.15)
Let: @Q

}dxdydadﬁ

o O A, = Az () + Az (@) (2.16)

(;3\0 A, = Az (a) — Az (@) (2.17)
\l@« Ry=Rz=(p)+Rz*(p) (2.18)
R, =Rz*(B)— Rz~ (B) (219)

Replacing (2.13), (2.14), (2.16)-(2.19) in (2.15), it is
obtained:

TU(Z) = TU(AzRz)

1/2 1/2 R
_ 1
f ff f +xA2 4 2+yR] -5, dxdydadp

1/27-1/2
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(2.20)

TU(Z) = f J ek’ ——d adp (2.21)

2
= p1p; j f o~(2/7207ma) (~(27278) 0 (2.22)
0 Y0

_ P1P2
= A+ 80,91+ 80,7 ég'zz”)

r‘\
3. PROPOSED LAMDA EXTENSION&)\

Based on the literature described in the pr&hs chapter, it
has been possible to detect that has certain
drawbacks, as described above, h learning stage for
both the supervised and unsup \ﬁgéi cases, which cause
its performance to decrease@ order to address these
problems, this section pr ensions (improvements)
to the algorithm that ar &serlbed in detail in the papers
[105-108] published d in this work, where large field of
experimentation lidation of the proposed extensions

is covered.
R

3.1 Ext@smn of LAMDA in the classification

@ntext

Qﬁs subsection, the Iris dataset [109] (common
benchmark for classification) is chosen as a practical
example to expose the problems and weaknesses of the
original algorithm, and the possible causes of
misclassification when the algorithm is tested. The Iris
dataset is a multivariate dataset with three classes
corresponding to the species: setosa, virginica and
versicolor, with four descriptors (sepal length and width in
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cm, and petal length and width in cm), with 50 individuals in
each class. The real distribution of its individuals in each
class is shown in Figure 3.1, in which the different colors
represent the three classes where are shown the class
setosa (50 first elements in blue), virginica (50 elements in
green) and versicolor (50 elements in black).

e Class1 {b.
Class 2 | %
® Class3 ,0\

L Q‘s ,}

S
8 2
| &°
00 5‘(‘0‘, 1(;0 150
%ect number (n)
Figure 3.1{M¥ Benchmark data and classes

The fuzzy bin(e}@ function has been used to calculate the
MAD. For alculation of the GAD, the Hammacher
operator % been used recurrently, and a high exigency
level @ been parameterized (a =0.9) to reduce the
@sificaﬁon. The GAD of each element for each class
ulated by the algorithm, are presented in Figure 3.2.
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Correctly Classified

GAD Class 1
GAD Class 2
GAD Class 3
GAD Class NIC |

0.4

GAD Value

o
)
a

02F

Py

0.15 F Missclasified {\
(overlapping GAD) < ’}
0.1 L L
0 50 100 Q‘\wso
Object number (n) é
Figure 3.2. GADs in each clas is dataset

Choosing the maximum GAD for@h individual of Figure
3.2. The classification shown igure 3.3 is obtained,
where clearly it has been ible to observe the three
cases marked in Figure 3&8

1 Wel classifiedﬁ&ividuals whose descriptors are
clearly differ@ ed in each class, so the GADs are
r example in class 1, the blue GAD is

well definr§
clearly differentiable from the rest).

2 Se ’Qb NIC class: individuals whose maximum GAD is
I§§§ than the value of GAD,,, so that these individuals

NlQAre sent to the NIC to create a new class (e.qg, first
individuals in class 2).

3  Misclassified: individuals that, due to the similarity of
their descriptors, cause overlapped GAD, producing
errors in the classification (as can be seen in class 3,
the red and yellow GAD are overlapped).
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Class2 ||
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®  Class NIC
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Class (k)
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Object number (n) s\

Figure 3.3. Classification results of the origina&é\DA algorithm

Note that the assignments of elements\'@igure 3.3 coincide
with those shown in Figure 3.2 (sa olors) since a correct
classification is made, however i me cases elements are
misassigned and others are s@ to the NIC (red dots).

An alternative approach,j posed in [60], called LAMDA-
FAR, which is base?‘?? measuring the maximum and
minimum distancm@e en the two highest GAD for each
individual O a each class k. However, this proposed
methodology, i id only when the GADs in each class does
not overl ch other. For this reason, LAMDA-FAR cannot
be appfid”in problems as the Iris dataset. Based on this, it
i rtant to attack the two problems outlined above.
A-HAD addresses these drawbacks with two
strategies:

e First, it is proposed to calculate as many NICs as the
number of existing classes. In this case, each NIC (and
its GAD) is calculated based on the intrinsic
characteristics of each class, which prevents to send
well-classified individuals to the NIC, as it occurs in the
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original LAMDA algorithm, where only one NIC is
calculated for all existing classes.

e The second strategy is based on calculating the Higher
Adequacy Degree (HAD), which consists of measuring
the degree of similarity of the GAD of an individual in
relation to the average of the GADs of the existing
classes through probabilistic operators, allowing tg.know
with greater certainty the class to which an i@ idual
belongs. It allows improving the robust N of the
algorithm and awoiding that individual th similar
characteristics between classes are mi&siﬁed.

3.1.1 Extension 1: Adaptable GAD&

The proposal is based on é&ing the drawbacks
corresponding to individuals s ncorrectly to the NIC; this

problem is clearly shown '@g re 3.3, where the red dots
are unidentified individ hat really belong to class 2. To
avoid this, the calcu of the GAD,,. adaptable to each
class has been coqgmered.

For the calcéy®n of Adaptable GADy, the following
definiions {are  proposed, which consist of simple

mathera& | operations that do not consume excessive
co tational time.

inition 1. MGAD,, is the average value of the GADs of
the class p in a class k. Considering that n, is the number of
individuals belonging to class k and p = {1, ... m} where m s
the number of classes. This parameter is computed as:

t=ny

1
MGADy, = - Z GAD,, 3.1)
t=1
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where GAD,,. is the GAD of the individual ¢ for the class p,
inthe class k. For example, MGAD, , is the average value of
blue GADs in the class 1, as shown the graphical
representation of each MGAD (green lines) in Figure 3.4.

05
MGAD; ;

i M\w (\{i;b»
PR

GAD Value

Figure 3.4. MGAD obtainedgé ; GAD in the different classes

In Figure 3.4. see th @e MGAD are calculated based on
the GAD of each cl hus MGAD,,,.is the mean values of

all the GADy,,.
Deflnltlon % GADyc, the GAD of the NIC for the class

k. The % Nig, 1S computed as the average value of all the
MGA n each class, e.qg., if there are three classes as in

lr\|§p II be calculated GADy;¢,, GADy;c,, and GADyc, (see
le lines of Figure 3.5). The calculatlon of GADy,g, i

done using (3.2).

1
GADyig, = — Z MGAD,,, (3.2)
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As shown in (3.2), GADy,, depends on the contributions of

all MGADs, therefore, it also depends on the distribution of
all GADs in each class.

GAD Class 1
GADClass 2 ||
GAD Class 3

GAD Class NIC

0.4

GADya A

GAD Value

_ J
. ol
GADNG GADug \4
0.25
0.1 s 7S
0 50 150
Object num?éq

Figure 3.5. Mean value GAD ¢ @eaeh class in the Iris dataset

3.1.2 Extension 2: Hj Adequacy Degree (HAD)

To decrease the Xp¥Sbability of obtaining individual
misclassification o the similarity of its descriptors with
features of di t classes, the calculation of the Higher
AdequaC}/ edree is proposed. This parameter allows
establishiQg " the similarity between the GAD,; of the
nor ﬁ%éd individual 0 and the GADs of each class k.
QL\%@ the original LAMDA, the approach does not directly
choose the maximum GAD. First, an estimation of the class
index is made to which the GADs of the individual are most
similar. For this, it is proposed performing additional
calculations to the algorithm based on the following
definitions.
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Definition 3. AD, Dy 5 is a parameter that allows to obtain
a measure of similarity between the GAD of an individual 0
and each MGAD,,. It is calculated using the following
probability density function:

ADgap, 5 = MGAD,, **ro (1~ MGAD, )" (3.3)

For O evaluated in each class with (2.2)- (2 This
expression is similar to the used (2.5) which |s mial
function used to measure similarity between

Definition 4. Let ADGAD ; the new adequ egree of the

GAD, the calculation of the Higher Ad cy Degree (HAD)
of an individual to a class is done by % g all the ADGADk

HAL&% ADg,, (34)

Based on this calct!@n, the highest value of the HAD, ; is
the one with the% hest membership degree, obtaining the
estimated ind 7 of the class to which the individual has
the higrgeé@obabnity to belong.

in the class k as:

«C;)\ E; = max(HAD, g, .., HAD; 5, .., HADp5)  (3.5)

tion 5. Let index, the index of the class with the
highest adequacy degree, then it is necessary to verify if the
maximum value of GADg, 5 is greater than the GADN,CEI. If

this rule is met, then the individual O belongs to the class E;;
otherwise, it will be sent to the NIC (see (3.6)).

index = argmax(GADg, o, GADN,CEI) (3.6)
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3.1.3 General procedure of LAMDA-HAD

Normalize O

Select MAD function -
Select GAD function MADy; — (Gjlox;) =120
PNIC, j=0-5 {b»
l Z
L Compute the r
Define & (1—>{ GAD5 < (MADy,..., MAD;,..., MAD,) indivi the
| class p, class k

~ A
v v 1@1
ADGAD (MGAD,, GAD,3) | 1 byl
kpd, p, GAD, G GADy,, «— (GAD,,)
* \y kp p.t

N !
HADy5 | (ADGADk,p,ﬁb§®’

GADNIC, < (MGADy,)

v FA)
e (HADLa,..,,K%..TSADm,a)

N7
7
if@\%max(GADE@, GADNICE)

N I

%g yes LAMDA-HAD APPROACH

index = NICg,

. ’< \}ssignmem ((E.Ir;:stecnew
\ O— Cingex ~ . m+1
& 1
N

Figure 3.6. LAMDA-HAD structure

The operating scheme of the LAMD-HAD is presented in
Figure 3.6, in which the additional steps of the approach
(marked in the red box) can be seen in detail in order to
improve the performance of LAMDA in classification tasks.

8 A
p
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3.2 Extension of LAMDA in the clustering
context

In some clustering applications, the number of created
partitions performed by LAMDA does not correspond with
the number of desired clusters, which can be excessive or
impractical for the expert. Therefore, the contribution in this
subsection is the formalization of an automatic @rge
techniqgue to update the cluster partition per ed by
LAMDA to improve the quality of the cIustetf\ d a new
methodology to compute the Marginal acy Degree
that enhances the individual-cluster as nirient.

In [13,45] has been shown that LAM%A reates clusters that
do not correspond with the n r of desired groups.

Clusters with a high similarity ee should be merged in a
single cluster, according similarity measure. Thus, the
algorithm should autgéglly decide when a merge
process between clu isrequired. For that, it is proposed
to hybridize t original algorithm with  distance
measurement e proposed method is called LAMDA-RD
and in wh e split task is considered as an intrinsic

LAMDA fé3tire, because it can create new groups from the
globa{(i;%quacy concept.

y function [110] is used to compute a membership
degree u.(o) that models the similarity of an individual to a
cluster. This function requires the distance of the individual
o to a prototype member p, (center of the class) represented
as dist(o,p,). The Cauchy function is computed as:

1

1+ dist(o,py) (7

,LlC(O) =
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3.2.1 Robust Distance

Definition 6. Cauchy Marginal Adequacy Degree (CMAD).
This parameter corresponds to the MAD computed using the
Cauchy function presented in (3.7). If we apply this
expression in LAMDA context, it must be considered that
0o=0; and p, = p,; (descriptor j of the centroid of the
cluster k computed with (2.4)), now redefining the lvgg) as
CMAD itis obtained (see [107] for more details): ’\{b
e

CMADk,j(ka) “1+dis k)

(3.8)

To keep the MAD concept of probabigh nction, we set as
CMADy;(pi;) = 0.5, this is the thgeshold for the NIC as
computed in fuzzy binomial funci#gR.”In clustering, pk,j(t) is
calculated with (3.9), and i the mean value of the
descriptor j in the previon.&reated cluster k. Itis updated
progressively each timb, at a new element is added.
n,(t —1) isthe nun@of objects previously assigned to the

cluster k. Q‘\
0;(t) — pyj(t—1)
X QQJ:?(@ =p;(t—1) + jnk(t _klj) 1 (39

Defin'{“@ﬁ 7. Robust Marginal Adequacy Degree (RMAD).
i rameter corresponds to the product of the CMAD and
ggenalty factor K, ; computed for each cluster k. To obtain
K5, two parameters are required: the first one is the
distance of the individual O to the center of each cluster k
(dy5), which is calculated as:

o 1)
dyo = dist(0),py,;) = ;ZM — Pl (3.10)
j=1
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And the second parameter is the threshold d,, € [0,1],
called “average distance between neighbors”, which must
be set by the user (in Appendix C is described a method to
calibrate this parameter).

Proposition 1. The penalty factor K, 5 is computed with
(3.11). If the average distance d,; is greater than d,,
(dys > dyp), then K, 5 is computed as: {b

dnb %

K= (3.11)
? dnb+dlSt(dkO' nb)s\e"\

As shown (3.11), if dist(dygs,dny) mcr&s, then K5

decreases. (2}

Proposition 2. Ifthe average disl@ dy g is less than d,,,
(dyg < dyp), then K, 5 is set to Qb cause it is not required
to penalize the CMAD of jndiiduals that are within the
threshold. Now, RMAD,,; §,66mputed as:

RMARDy ;) = Ko X CMAD, (3.12)

As shown (3. N MAD,; is equal to CMAD,; if the
condition of P&ition 2 ismet, in other words, the distance
between @individual 0 and the cluster k is within the
thresh np- According to Proposition 1, if the distance

lﬁe the individual O and the cluster k is greater than the
t& ld, then CMAD is penalized; therefore, a decrease in
the adequacy degree is established. K, ; reinforces the
measure of similarity degree based on distances. The two
established conditions of d; 5 affect the computation of the
RMAD. The following properties P1 and P2 clarify how the
penalty factor behaves before the different inequalities
between d, ; and d,,;,:
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PL:If (dis > dpp)ldny € [0,1]

d
=Ko =07 dlstn(bdko, ) .- v5i18€0]
= Ky <1 RMAD,;(p,;) < CMAD,; (3.13)
P2:1f (dig < dup)ldny € [0,1]
= Kyo =1 RMAD, ;(p,;) = CMAD,; @.14)
The penalty factor forthe NIC issetKy;c5 =1,b eitis
not required to penalize the Non-Informati lass. As

observed in (3.13) and (3.14), the dlst§$ dyo allows
penalizing the dissimilarity between % mples and the
clusters. This parameter is called Rob Distance, hence,
this proposal takes the nameg LAMDA-RD. Once
calculated RMAD, the compujalibh of the GAD is like the
original LAMDA, using (2.7)(,8u ith RMAD instead of MAD.

3.2.2 Autom merge algorithm

To describe the a tic merge algorithm for LAMDA, the
following definiti are formalized:
Definition 2\&Iuster C, with n;, elements is described by
the tuple,
«C;)\ C = (pxj» Oy index — k) (3.15)
Px,j is the centroid of the descriptor j in the cluster k,
which is updated every time that a new individual is assigned

to C,, (see (3.9)), 0, is the set of individuals in Cy, and index k
is the identifier of C;.

Definition 9. The neighbor cluster C,,; with n,,, elements is
described by the tuple:

Crp = (Pupj» Onprindex —ny,) (3.16)
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where p,,;, ; is the centroid of the descriptor j in the cluster
nb, 0,,,, is the set of individuals in C,,;,, and index — n, is the
identifier of C,,,,.

LAMDA is non-iterative, therefore, in the clustering process,
one individual is analyzed at a time. So, according to the
LAMDA fundamentals, the maximum GAD is where the
individual is assigned to, so, it is noted that the secong?/@AD
of greater value is the nearest neighbor cluster.

The main problem to solve is the drawback Qfae original
LAMDA: the excessive creation of clusterg’\ﬁch has been
described based on the citations at the f section 2. So,
it is essential to perform an automatic\érge. The proposal
is characterized by similarity mea: based on distances
and densities. In the merge s%@iwo cases can occur:

the NIC, and therefore, a
we have to do an analysis
individual — cluster igure 3.7a). In the other hand, if
the individual Wag signed to an existing cluster C,, we
have to do an Q@ysis cluster — cluster (see Figure 3.7b).

If the individual was assi
new cluster was cre

In uﬁe ure o
P% 2
©

o (@]
Input feature 0,
O

Input feature oy Input feature oy
@) (b)
Figure 3.7. New sample assigned to (a) new cluster, (b) pre-
existing cluster.
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Definition 10. Measure of the compactness of the neighbor
cluster (t,,,). It is the mean value of all the distances (in
each descriptor) among the individuals belonging to the
neighbor cluster C,;, and it is computed as:
np—1 n =i =
Zn 1 E:Ln:biﬂlofllb.j — 07%.j| .

P— =1 \v j = 1 17
tunj Moy X My — D X mx1 4= m(317)

where 5}1,,,]- is the descriptor j of the individual i in thg)@lster
Cur QO

Definition 11. Number of individuals in the o ping area
(N}). The overlapping area is the region e individuals
from more than two clusters are fo{y The number of
individuals in this area is com by counting the
individuals inthe overlapping ar e clusters C,and C,,,
whose distance between its in e%]&ﬂs is less than ¢, ;. For
this, it is required to identi % individuals of each cluster C;,
and C,,;, that meet that ition, and then, the cardinality of

the resulting subse%@calculated as:

Nk :é@k’j’anb,j) < tnb,j ; V] = 1, ,n}

. Q = N, =n(Ny) (3.18)
’%\Qb = {d(ﬁk‘j,ﬁnb’j) < tnb,j; V] = 1, ,TL}
\ > Npp = 1Ny (3.19)

\‘m;re N, and N,, are the number of individuals in the
overlapping area for the cluster €, and C,,;,, respectively. The
total number of individuals in the overlapping area N, is:

N, =Ny + N, (3.20)

Definition 12. D,_,, is the density in the overlapping area
between two clusters C, and C,,,, and it is computed as:
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Dy_np=

NI
Nup + ng

(3.21)

Proposition 3. Two clusters C,and C,;, are merged, if
Dy_np = D;. D, € [0,1] is a density threshold set by the user.
A high D, value implies a greater density of individuals in the

overlapping area.

Figure 3.8 shows the cases in which the condmap of
Proposition 3 is not satisfied.

&Q"\ (3.22)

(66

o

No merging process

Input feature 0y

pnew,j (t 5
d(ﬁk.J vanm)

; o ; \@ Chp
: : 10
g * -),g
é— Overlapped QE

area

Dy-nip<Dy i@

Input feature o, {b,
07 @
d(%‘{w

Input feature o,

Overlapped c

Q} area
Dynp<Dx

L

Input feature 0y

Input feature o,

0
: ‘
‘ Ck

No merging process

Input feature 0y

(b)

Figure 3.8. Graphical example to assign a new sample to a
cluster, when Proposition 3 is not met, (a) the sample creates a
new cluster, (b) the sample is assigned to a pre-existing cluster.

Itis observed that the new individual 0 increases the density
of the overlapped area between the clusters C, and C,,,.
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However, if D,,_,, < D, then the algorithm does not proceed
to do the merge process, considering that there is not
enough similarity between the two analyzed partitions.

If the object is not merged, then it becomes the first element
of a new cluster C, = C,,,, Figure 3.9 shows the cases in
which the Proposition 3 is satisfied. It is observed that the
new individual O increases the density of the overlapped
area between the clusters C, and C,,;, computed wit&i_§21).
If D,,_,., = D,, then the algorithm proceeds to d ’} merge
process, considering that there is enough ir@‘%‘vbetween
the two analyzed groups. }}

Definition 13. Resulting New Cluster\{%ww) with n, +n,,
elements. The resulting cluster a@he merge process is
given by the tuple:

Crew = {Prew, -,%%nb, index — new}  (3.23)
6 Ne+npp

p (ZZ# Z 0L o i (3.24)

‘{ﬁ T + M =1 e
where 0y, té%e descriptor jof the individual t in the
Clusters Ckéq C,,, that form the new cluster C,,.,,.
4
O

4

XQ;\ d(Ox,0nbj)
83 - s _
2 L
S 9 =1
< bt
& &
2 E
£ Overlapped £ Crew=Cx U Crp
area
Dy.np=Dy Merging process
Input feature oy Input feature o,

(@)
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Input feature 0,
Input feature o,

Overlapped

area p, =Dy Merging process

Input feature 0, Input feature 0,
(b) 2>
Figure 3.9. Graphical example to assign a new sa 0a
cluster, if Proposition 3 is met, (a) the algorith es the
individual to the neighbor cluster, (b) the algosjt§y merges the
cluster where the individual was assigned the neighbor

cluster \(b
As shown in Figure 3.9, each ti that an individual is
assigned to a cluster, it is eval d if the density of the
overlapping area has increasé’i) The density is considered
as a requirement to dete if the merge process should
be executed accordi\n&> e threshold D,.

3.2.3 G{@ral procedure of LAMDA-RD

The scheme d@ure 3.10 details the LAMDA-RD based on
distance§ Q&d densities and the additional steps of our
approaC@narked in the red boxes). The first step is the
norm@htion of the descriptors of the individual. Next, the
g@ calculations are made for each descriptor in each
cluster, using the Cauchy function, which considers the K; 5
parameter to penalize the dissimilarity between the
individual and the clusters based on distances, as shown in
(3.10)-(3.14). With RMAD, the GAD in each cluster is
computed, setting a high value for the exigency level (a =
1), with the aim to get a strict behavior.
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LAMDA-RD APPROACH

*

@

ROBUST DISTANCE
CALCULATION

Normalize O

‘ CMADy; « (0jlox;) "_|

Compute Ky

|

assign the individual to

Create new

an existing cluster (b cluster Cp.q
QN

N <7 v

@?(e neighbor cluster through
{ Definition 9

A\ 7
{o ‘ Calculate the threshold ty,

v
/) Calculate density Dy.qy in
the overlapping area

XS
3 oD

Execute merging process:
Statement 3 and Definition 13

v
m =1 ( for the first sample analized )
m=m-1

Figure 3.10. LAMDA-RD algorithm
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The highest GAD defines the cluster in which the individual
must be assigned. However, if the maximum GAD
corresponds to the NIC, then a new cluster is created, being
this individual the firstsample of the new group. In the merge
stage is evaluated if this process is required between the
cluster in which the individual was assigned and the
neighboring cluster, this because the individual can be
located in the overlapping zone between both clésters,
fulfiling the merge requirement of Proposition 3. Q%%neral,
the algorithm starts with m = 0 when no elem@ as been
analyzed. When the first sample to be eﬁaed arrives,
then the first cluster is created (m = 1) own in Figure
3.10. Next, when the second samst:&rrlves then it is

evaluated, and if the conditions es hed by the algorithm
are met, then this sample is assigged to cluster 1, otherwise,
a new cluster is created (m,=%). This process is followed
successively for all the les, until evaluating the last
sample N, assigning, @ne of the current clusters or a new
one. Thus, the al does not require the definition of
the number of c %ters (m).
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4. LAMDA IN THE FIELD OF CONTROL
SYSTEMS

The application of artificial intelligence to the control theory
aims to improve the overall performance of a complex
system. In a control problem, artificial inteligence
techniques can be used to meet different objectives, such
as: plant modeling and/or control, system perf%&nce
improvement, calibration and parameterizatio mong
others [4]. A current trend is to incorp Qe artificial
inteligence techniques into the control syﬁs, in order to
develop simple controllers that impro e performance
without needing to know the model of the”plant in detail, with
enough robustness to achieve thQ ntrol objectives and
feasible implementations, consj g, €.g., low computation
time during the execution o Igorithms.

Over the last decade%Qearchers have devoted much
effort to the study\@ SISO uncertain systems. These
systems can havez\l‘;%gular and unpredictable behavior due
to uncertaintie, modeling [111]. Nonlinear controllers are
a very usef] @)I to solve this problem, which is an open-
field res&h and it is continuously developing new
alter s or combining different methodologies that have
i d the response and behavior of the different systems
to™®e controlled [7,112-115]. PID controller is still the most
used standard tool for industrial applications [116]. The main
drawback of PID is that its efficiency depends on a correct
tuning of its scaling gains, a process that can be performed
with different methodologies. However, in practice, more
systems cannot be modeled exactly due to undesired
features, such as non-linearity, and time-variability, which
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make more difficult to tune the controller parameters. Also,
some known tuning methods are model-based, so they are
not suitable in applications of uncertain or variable
dynamics.

Fuzzy Logic Control (FLC) is an interesting technique to
develop intelligent controllers with excellent results in
several applications. The main features of the FLC éll?—

120] are: a) excellent performance in systems in whiéh the
model of the system to be controlled is not known
[121], b) it allows to design robust contr that are
capable of delivering a satisfactory rency against

uncertainty [111] and, ¢) a nonlineal cgltroller developed
empirically can be designed. Unlike ke ‘tonventional model-
based control techniques, fuzzy ollers require a set of
heuristic rules to compute the &ol action to be applied to
the plant. For the definitio rules, the designer (expert)
needs to have prior kno %e of the system operation [122]
to cover a broader of operating conditions. Because
Fuzzy Logic (FL%(&sed techniqgues do not require an
accurate mod;ﬁ the plant to be controlled, they are
considered as telligent controllers. FL is one of the most
used actif §intelligence methods for its ability to manage
ambi @ and allowing reasoning processes under
u inty. In control problems, the artificial inteligence
'r’r;éthods are widely used to reach different objectives, such
as plant and controller modeling and design, scaling gains
calibration and parameterization, system performance
improvement, among others [4].

The LAMDA technique, as described in Section 2, bases its
operation on fuzzy logic. Therefore, it has been selected for
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the development of a new controller due to the following
features:

e [tis anon-iterative identification algorithm.
e It works in supervised and unsupervised tasks.
e Low computational complexity (non-iterative algorithm).

¢ lts internal structure is known, i.e., itis a white b(?g@nere
all its parameters can be accessed.

e Easy implementation in programing terr@ does not
involve complex routines or mathematl erations.

The fixed hidden layers of LAMD@ls an additional
advantage over other methods like icial Neural Networks
(ANN) where the designer r@specify this parameter,
which is not trivial. Being zy classification/clustering
algorithm, it does not h n inference method because
original LAMDA only @ns elements to a class or cluster
based on similari t is why in this work an inference
method is prop that allows taking a corrective action
that takes the@ em to the desired class from the current
class. Inptl@c words, the idea is that the controller can take
the sy rom a current functional state to a desired one.

Di @nt LAMDA approaches applied in the field of control
?y&tems are presented in detail in the following subsections.
Initially, the Rule-based LAMDA proposal is formalized, in
which an inference method applied to the algorithm is
established, to convert it into a fuzzy controller. With these
bases, the LAMDA Sliding-Mode Control (LSMC) controller
is detailed, a proposal with robust characteristics and
chattering free based on the Lyapunov theory to guarantee
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the stability. Then, the Adaptive LAMDA proposal is
presented, which can self-adjust its internal parameters to
model and control systems based on online learning. Finally,
the SMC based on Z-numbers (ZLSMC) approach is
formalized, which makes use of the reliability concepts to
improve the performance of the controller. Also, it uses the
deviation between the reference and the current system
output as a measurement criterion. f&
Ko

4.1 Rule-based LAMDA Q‘}

Once the information of the object defined gjs descriptors
is available, LAMDA identifies the currentstate of the system
and takes it to the desired state. Fh&%is purpose, it is
necessary to define rules based system knowledge,
which is also carried out in c@ntional fuzzy controllers.
The analytic expression that Smmarizes the fuzzy logic
system inference mech& considering the classes in
LAMDA is representg&)@v ollows:
Rule("):l'\ﬁ.)1 is F and ... 0; is F{! ...and
{b 0,is Ff THEN y, is G,  (4.1)

where 1@ is the rule applied for the class (functional
state) d) 7 is the descriptor j of the object O, with U; the
uRiyetse of discourse that corresponds to the values that

h descriptor j can take. The output linguistic variable y,

is defined on a universe of discourse V. F; = {F:q =
1,2,.., Q} is a fuzzy set on U; with Q the number of linguistic
values (fuzzy partitions), and G, is a fuzzy seton V.

Because LAMDA does not have an inference mechanism,
the presented proposal is based on using the GADs. We
propose to use the first order TSK inference method [123],
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where G, = y,, with y, a constant value (weight) specified
for each class which is described in detail in subsection 4.2.
To compute the crisp output, it is proposed:

m
k=1

the k — th rule, and I' is an adjustment parameter to rate

where u is the controller output, y, is the weight appl';ed in
the output. The parameter I' is computed as: Q’,’S\

argamax(y) Q‘
E;cnz 1Yk GADk,argmax((Péé

where function GADy ,rgmax(0) re:?/éis the value of the GAD
calculated for the maximum valyé of each descriptor.

(4.3)

Finally, replacing (4.3) @»4.2), the crisp control action
computed by LAMDA@%n object 0 is:

(ér?amaX(V )
k Z YGADs  (44)

&?Vk GADk,argmax((_)) =]

In (4.4), I@Qontroller output depends on the GADs and the
cent §;)\@T the classes p,; (used for the calculation of the

Qs) defined in the training (design) stage, which remains
fixdd during the operation of LAMDA as a controller. The
scheme of the LAMDA controller is shown in Figure 4.1
[124], which has three layers. The number of nodes in each
layer depends on the number of descriptors and their fuzzy
sets. Based on the fact that all descriptors are considered to
have the same number of classes "c," the total number of
classes is m = ¢! (with I: the number of descriptors of one

m

u =
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object, see (2.1)) and the number of nodes in each layer is,
for layer 1: lc nodes, for layers 2: m nodes, and for layer 3:
1 node. Note that using LAMDA as controller, it is not
consider the effects of the NIC in the algorithm, since it will
always assigns the object O (input data) to one of the
previously defined classes.

Layer 2

I I
MAD calculation | | {b'
i GAD Calculation i Laye%
i i
I I
i I

input

Iy 3
) | u

RO

LMADYCy . 0)) |
N/

-7
|
|
|
|
|
|
|
|
1
L
|
|
|
|
|
|
|

Figure 4.$%eme of the proposed LAMDA controller
4.2 ,L\’@QDA Sliding-Mode Control (LSMC)

ii?}K System description and fundamentals of SMC
In

is subsection, a class of SISO continuous nonlinear
systems with external bounded disturbances is described.
These n-th nonlinear systems are represented in state-
space as:
xl(t) :xi+1(t), i= 1,...,n_1
%, (8) = AX(0),8) + b(X(¢), u(t) + d(t) (4.5)
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where X(t) = [x,(t),x,(¢), ..., x, ()] =

[x(®),x(®), ...,x("‘l)(t)]Te R" is the state vector of the
system, which is measurable, A(X(t),t) and b(X(t),t) are
not exactly known, continuous and nonlinear bounded
functions, suchthat |A(X(t),t)| < B4, with B, the upper/lower
bound of the function A(X(t),t), u(t) € Ris the control input,
the upper/lower bound of the disturbance d(t) € R_is By,
such that
l[d(t)| < B;. b(X(t),t) is upper and lower boun@’\such as
0<b<|bX(),t)| <b.[122].

The control objective is to design a contrg| IQ for the system
state X(t) to track the desired state béctory X, (t) in the
presence of external disturbancesé@} model uncertainties.

Considering the desired state ctory X,(t) as:

Xo® = QB x2®, o 20 OF

Xq (t) 20,54, x70®] (46)
The tracking err efined as:
DN E® =x,0-x®
= [xa{@dzct), e X O = [3,.(0,%,(0), e, 2, (O]
={€6Rt),e2(t), ey (O = [e(D), e(0), ..., e("-l)(t)]T (4.7)

n, the controller is designed, such that for any desired
state X, (t), the resulting tracking error vector satisfies:

mlE@I = limllX, () - X(© =0 (48)
where ||| is the Euclidean norm of the vector

The idea behind SMC is to define a continuous surface in
which the process can slide to its desired state trajectory.

60



The selected sliding surface is an integro-differential
equation addressed in [125], defined as:

() = (%+ A)n f e(t) dt (4.9)

where n is the system order, and A1 is a strictly positive
constant that helps define the sliding hyperplane.

The control objective is to satisfy (4.8); that is, the Wem
state is equal to the desired state as the time tend finite.
When this happens, (4.9) reaches a constant and the
system isin the sliding mode satisfying $( . Therefore,
the equivalent (continuous) control laww from (4.5) is
computed as: N\

1 .
e = poxe AR OO ~ X O] - (410)

Based on the Lyapunov s&b@ty heory, a Lyapunov function
V can be defined as: {&

x\éﬁ?(s(t)) = 2 s(0)? (41)

Moreover, the@Qvative of Vis:
Ls d n
Zé@%: s(O$() = s(0) [(&H) e(t)] (4.12)

%@}2) is negative for all s(t)# 0, then the reaching
cOndition is obtained. Particularly, the control action u is
designed to guarantee that the states are hitting on the
sliding surface [126]. In the conventional SMC, the reaching
(discontinuous) control law u, is defined as [127]:

uy = Kpsign(s(t)) (4.13)
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where Kj, is the switching gain. According to Lyapunov
theory, the state vector of the system approaches the
hyperplane if V < —Kj|s|. Thus, control action u is:

u= u,+uy (414)
4.2.2 The proposed approach of LSMC

Considering the system presented in (4.5), a traditional\SMC
controller can be designed if the plant model is knagiY The
LSMC method is focused on designing a control f\hat can
be applied in that class of SISO continé@ﬁ]onlinear
systems whose parameters are variabé ncertain, or
cannot be accurately defined. To a\h@ve this goal, two
points are raised in this document: {&

e Based on the fundamentals (\e SMC, select a suitable
sliding surface [117].

e Apply LAMDA to re?&nd maintain the system on the
sliding surface i presence of uncertainties in the
model and & nal disturbances, eliminating the
phenomen nown as chattering that occurs in the
conventi SMC [112].

T 1

The fo g procedure is used to compute u, and u, with
LA or the system defined in (4.5):

‘n:k sliding surface shown in (4.9) is selected; developing
that mathematical expression:

danr n-1 dn—z d
=|— - 2 n-1_"
s(t) (dt+r"‘1/1 T +1,_,A T +o A T

+,1n> f e(t) dt (4.15)
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where {r,_,,n,_,,..,7;} are the terms obtained by solving
the polynomlal of (4.9) with power n.

Solving (4.15), the following expression is obtained:

d™ te(t) d™2e(t) X d™"3e(t)
S(t) = T+Tn_1lT+Tn_2}. dt +
+ At le(t) £ A f e(t) dt (4.16)
Then, the derivative of (4.16) becomes: {i;b'
{0 = d"e(t) N d" te(t) FRp* ary ’}+
SWETge T dt -

/1” 1 +/1n§§¢
=e™ ) +1,_ ;e D41, _ Azégﬁx)+ et A te(t)

+;t"e(t) ‘%‘
=e™@O+ ) r,_ ey (4.17)
Do

with r, = 1 and e“’)& e(t). From (4.7):
e ) = (0 = 1,0 (4.18)
Replacing % n(4.18) :
e™ eqe %an () — ACX (D), 8) — b(X(0), )u —d(t)  (419)
and cing (4.19) in (4.17) it is obtained:

= Xgn(0) —AX (), ) — bX(©), Du — d(t)
+ ) r,_Ale®D (4.20)
2

Considering the continuous control law u = u_ in (4.20), the
following is obtained:

S(t) = xdn(t) - A(X(f), t) - b(X(t)' t)uc - d(t)
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n
+Z r_ e (421)
i=1

The objective is to satisfy $(t) = 0 with the control action
u.. For the design of the controller, it is necessary only to
know the sign of b(X(t),t), in order to establish the rules
based on the classes of LAMDA.

In this work, we chose five classes that define the j@onal
states of s(t). These are NB: Negative Big, egative
Small, ZE: zero, PS: Positive Small and P sitive Big,
values used to establish the rules that all compute u,
required to satisfy $(t) = 0. In sub-Secipp 5.2.1.2.1, a brief
sensitivity analysis of the number oﬁ%ses is presented, to
determine how this paramet%“\ ffects the controller
performance.

For simple handling of t (g}asses and the control output,
the classes are standard& between [-1,1][121]: NB = —1,
NS =-05 ZE =0 =0.5 and PB=1. These values

have been cho's@\mitially to establish the rules that define
the behavior(zy the controller. However, for proper
calibration @e gain k, is used for the input $(t) (as shown
in Figu S\QZ), and for the control output, is proposed:

\EQ} u, =kouy,, (4.22)
u, =k, LSMC($); k., >0 (4.23)

where u,. € [-1,1] is the normalized control action of the
continuous part, and k. is its corresponding scaling gain.

Assuming that b(X(t),t) > 0, based on (4.21), it is noted
that $(t) decreases as u, increases, and s(t) increases as
u. decreases. This information is sufficient for the definition
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of rules that allow obtaining s(t) = 0. For instance, if s(t) is
PB, then large positive control action u, is needed in order
to decrease quickly $(t). If s(t) = ZE (desired condition),
then no control action is required, thus u, = ZE.

Based on this analysis, it has been designed the rule table
corresponding to the continuous part control actions, which
is shown in Table 4.1. Unlike [111,112,122], LSMC dges not

require the complete model of the system to be olled
since, based on LAMDA, the controller is defi\ for the
continuous part. Q‘

Table 4.1. Rule table of LSMC{{OQL“)

NB [NS [ Z» |PS |PB
Y1 Y2 3 Ya Vs
b(x@.0) >0 | T \p @@':ZE =PS | =PB
X
Y1 Y3 Ya Vs
b(x(t),t) <0 _ ;%:&ng =ZE | =NS | =NB

| o |
Now, It is necessa%@ compute the control action u, that
attracts the statesdQPthe system towards the sliding surface.
For this, itis se@ed the Lyapunov function in (4.11).
The deriyath of (4.11) becomes:
C:;\ V(s(t)) = s(t)s(t) (4.24)

TI;&r@%ased on the Lyapunov stability theory, itis necessary
atisfy the following condition:

s()3(t) <0 (4.25)

Replacing (4.21) in (4.25) considering only the
discontinuous part of the control u = u,:

s()s(t) = s(®) x4, (®) — sOAX(E),t) —s()bX (L), )uy —
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s@d(t) + s(t)z r,_Ale®D < 0 (426)
i=1

In (4.26), if s(t)s(t) is negative for all s(t) # 0, then the
existence of the sliding mode is guaranteed [121], that is, the
states of the system are attracted from any initial state to the
sliding surface.

For the computation of u, two cases can be @g@zed
depending on the sign of b(X,t). From (4.26 @suming
b(X(t),t) > 0:

e If s(t) >0 and u, increases, then th oduct s(t)s(t)
decreases and vice versa. \

o If s(t) <0 and u, increases ﬁq% the product s(t)s(t)
increases, and if u,; decre 7 then s(t)s(t) decreases.

From this analysis, itis pr@ed to generate a control action
ugq to satisfy s(£)s(t) <Oy

Five classes are g\é’ﬁished for s(t) and $(t), defined as
NB, NS, ZE, PB (the same for u.). Due to the
normalizati %he classes, the gain k, is added (as shown
in Figure @, which is used for the input s(t), and the control

outpupds®
Qf{‘%
uy = kyLSMC(s,8) ; kg >0 (4.28)

where u,, € [-1,1] is the normalized control action of the
discontinuous part, and k, isits scaling factor.

The rule table for the discontinuous control action is shown
in Table 4.2 for the case b(X(t),t) > 0.
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Table 4.2. Rule table of LSMC for s(t) and $(t) with b(X(t),t) > 0

5(0)

NB NS ZE PS PB

PB Vs Y10 Y15 Y20 Y25
=ZE =ZE =PS =PB | =PB

PS Ya Yo Y14 Y19 Y24
=ZE =Z7E =PS =PB | =PB

V3 Ys Y13 Y18 Y23

t
SO | ZE | Zyp | s | =zE | =bps

Y2 Y7 Y12 iz M2
NS Zng | =nB | =ns | = zeXQ8 zE

NB V1 Ye Y11 & Y21
=NB =NB = NS E | =ZE

The proposed method to design the ruIe is as follows:

Positioning in the row of s(t) = (@Ig $(t) to zero using
the same rules presented in$ e 4.1, considering for
this example b(X(t),t) > 0{‘\)

(&t) = NB and $(t) = NB, the
. Therefore, based on (4.26)
considering s(t , a hegative control input is required
(ug = NB) uickly decrease s(t)s(t). The same
situation i ented in the classes C,,C, C,.

In the class C,,wher
product s(t)s(t). j

In th %ss Cs, where s(t) = PB and s(t) = NB, the
t s(t)s(t) is NB. Therefore, no change in the
&r’;l action u, is required, thus u,; = ZE. The other
Iasses in which no change in the control action is
required because the condition is met are: C,,Cq, C1, C16,
Cy7, Cyp @and C,,.

In the class C,s,where s(t) =PB and s(t) = PB, the
product s(t)s(t) is PB. Therefore, based on (4.26)
considering s(t) > 0, large positive control input is
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required (u; = PB) to quickly decrease s(t)s(t). The
same situation is presented in the classes C;q,C5g,C54-

e In the class C,;, where s(t) = NB and 3$(t) = ZE, the
product s(t)s(t) is ZE. Therefore, based on (4.25) with
s(t) <0, to ensure that the condition s(t)s(t) <0 is
always met, a control action u,; = NS is applied. The
same situation is presented in the class Cy,. {&

e In the class (s, Where s(t) =PB and $(t E, the
product s(t)s(t) is ZE. Therefore, based .25) with
s(t) >0, to ensure that the conditio Qet)s(t) <0 is
always met, a control action u; = P %plled.

LSMC removes the chattering pre t in the conventional
SMC, replacing the discontinu sign function using the
fuzzy logic rules and the class O?Efined in LAMDA. For the
case when b(X(t),t) < 0,58&Bke 4.3 is obtained with a similar
analysis as the one p&ted before. Finally, the overall
control action is co d as:

Sl LSMC(S) + kyLSMC(s,8)  (429)
Table 4.3. }ﬂ\%le of LSMC for s(t) and s(t) with b(X(t),t) < 0
, o 5
NB NS ZE PS PB

;\ PB Vs Y10 Y15 Y20 V25
4 =ZE | =ZE |=NS | =NB | =NB
PS Va4 Yo V14 Y19 V24
=J/F |=7ZE | =NS | =NB | =NB
V3 Vs Y13 Vis Y23
t
SO |28 | “pp | —ps | =zE| =ns | =B

\3?

NS V2 Y7 Y12 Y17 Y22
=PB |=PB | =PS | =7E | =ZE
NB Y1 Ye Y11 V16 Y21

=PB |=PB | =PS | =ZE | = ZE
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The LSMC scheme is shown in Figure. 4.2, where the blocks
of the controller applied in the continuous and discontinuous
part are shown, the descriptors used in each LAMDA block,
the scaling gains in the inputs and the outputs, and the block
corresponding to obtain the sliding surface.

LAMDA ($) U= Ug+Ug

Nonlin: {Q((t)
" o Syﬁkg.')
—| Sliding . LAMDA (s, $)

’—vsmace s(t }\é‘\@

Figure 4.2. Block diagram of\@LSMC.
423 Stability Analysis \

The proposed Lyapunov func@l V is defined in (4.11) and
its derivative V is present@ (4.24).

To guarantee the stadty of the system, the derivative V
must satisfy the c@ion V < 0. For our case, this condition
is presented i 5) [76]. Therefore, replacing in (4.25) the
system pr d in (4.5), controlled by u(t) defined in
(4.29), Wl’@ . defined in (4.23) and u, defined in (4.28), itis
obtai@

QQ;

V=s(t) (an(t) —AX(@®),t)

—b(X(©), t)(k LSMC(S) + kqLSMC(s,$))

—d(®) + Zrn_,-/lie<n—i>> <0 (430)
i=1
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In order to prove the stability of the proposed method, from
(4.30), it is considered that x4, (t) and Y%, 7,_Ale™ D are
continuous and bounded [111]:

%4 (O] < Ban (4.31)

n

Zrn_i/lie("_i)

i=1

< B. (4.32)
%‘&

Theorem 1. Consider the system prese \ln (4.5),
controlled by u(t) defined in (4.29), vvher%@ﬂs defined in
(4.23), u, is defined in (4.28) and (k 1) > Ban + Be —
(B4 + By)- Then, the error state traj c%& converges to the
sliding surface s(t) = 0. 3

where 3, and 3, are unknown positive constants

Proof. The stability demonstr can be addressed in two
cases, based on the sign 9f9¢X,t), as follows:

e Case 1: Assumi simplicity b(X(t),t) = —1, without
loss of generali systems in which b(X(¢),t) < 1:
=s (xdng‘fb%((t) t) + k LSMC(S) + ky LSMC(s, $)
{;3 —d() +z _Aem- 0) (4.33)
2
From [72] and Table 4.3, for b(X(t),t) <0, it is
demonstrated that k,u, = —kg4lsl, and k.u. = —k.|sl|, e.g.,

u, has the opposite sign of s. Thus, replacing (4.31) and
(4.32) in (4.33):
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V=s <9’cdn(t) —AX(t),t) + k LSMC(S) + kyLSMC(s, 5)

n
—d(t) + Z rn_izlie(”‘i)>
i=1

< Banlsl = Balsl = kclsl = kgls| = Bals| + Bels|  (434)

V < Banlsl = Balsl = kelsl = kqls| = Bals| + Bel
= [~ (ke + kg) + (Ban+ Be = Ba =~ B)]Is| S04:35)
Therefore, to fulffill that s(t)s(t) <0, itis requﬁ@o satisfy:
(kc + kd) > ﬁdn + Be - (ﬁA d (4-36)

e Case 2: Assuming for simplicity ‘b&t), t) = 1, without
loss of generality for systems ix@»ich b(X(t),t) > 0:

V=s (xdn(t) —AX(D),t) —,5531\40(&) — kyLSMC(s, $)

—d rn_ilie(”‘i)> (4.37)

i=1

From [72] @@Table 4.2, for b(X(t),t)>1, it is
demonstrat§ at kyuz=k4ls| and k,u,=k.|s|. Thus,
. $ .
replacm@. 1) and (4.32) in (4.37):

&é s <5cdn(t) — A(X(0),t) — k LSMC($) — kyLSMC(s, §)

n
—d() + Z rn_l-/l"e("“')>

=1

< Banlsl = Balsl = k.Is| — kgls| = Byls| + Bels| (4.38)

V < Banlsl = Balsl = kclsl — kqls| — Bylsl + B, Isl
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=[=(kc +ka) + (Ban+ Be = Ba = BIIsl  (439)
It can be seen that (4.35) is equal to (4.39). Therefore, if
selected (k.+ ky) > Ban + B — (Ba +B4), then it is
concluded that the reaching condition s(t)s(t) < 0 is always
satisfied. Therefore, the proof is achieved completely. The
two cases analyzed are sufficient for the proof of the
theorem, since as previously analyzed, the only parameter
to be known is the sign of the function b(X(t),t), v@ﬁ as

shown in (4.33) and (4.37) does not affectthe oth riables
and can be analyzed in a general manner for s 1and 2.
4.2.4 LSMC scaling gains offlié calibration

The LSMC scaling gains (k, kz,kc,%ﬁe not a formalized
equations for proper calibration. &d we will consider its
mathematical formalization in I}él'ture work, however, the
parameter A can be calibrée ith the method presented in

[127]. Based on this cq ration, this work proposes two
calibration methods ‘& LSMC:

e Heuristic (en@ ) calibration
e Offline amalon using Particle Swarm Optimization

SO
Thes %o methods have been used to make a comparison
Qg@nalyze if there is a considerable improvement in the
performance of the controller by performing simulation and
experiments.

4.2.4.1 Heuristic calibration

The heuristic calibration used in this work is based on the
trial and error method, which, in contrast to the quantitative
tuning procedures, where the numerical values for the
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configuration of the parameters of the controllers are
obtained through the collection of data and analysis, a
"heuristic" or "trial and error” tuning procedure is one where
general rules are followed to obtain approximate or
gualitative results according to the system requirements
[128]. Most control loops, especially in the case of PID or
control schemes that do not have formulas for their
calibration, have been tuned with this method.

A true heuristic tuning method can be execute ne is
aware of the characteristic of the process to ntrolled,
knowing the applicability of the control actio, Sed on their
respective scaling gains. Simply experime with random
values for the scaling gains, it is ve |ous at best and
dangerous at worst if we do not unQZL nd what each type
of control action causes in the ss, and its limitations.
However, the heuristic meth E;%ém be implemented and
tested in simulations beforesgoiRg to the real plant, which is
an advantage in order t date this methodology for the
tuning of controllers

In this work, the LS{& controller has been calibrated based
on the measu ﬁ@ t and reduction of the Integral Square
Error “ISE” i (4.43). This index is used because it
integra’geg?square of the error over time, penalizing large
errors than smaller ones. Therefore, the controller that
obtai %e minimum index performs the best.

ISE = f o2 (t)dt (4.43)
0

The method also involves observing the quality of the control
action, seeking that it is within the energy limits allowed by
the actuator and observing the output of the system in order
to obtain an adequate response from qualitative point of
view.
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The previously detailed heuristic calibration scheme is
shown in Figure 4.3.

Evaluate the control output
and system response

v

Evaluate the error. (ISE, | Heuristic calibration

1AE etc) %
- ]
parameters
update —» LAMDA(S) A”@i
AN |
) 8(t) o%ystemar i X()
Sliding L LAMDA(s , §) I
surface 20 }
D }
2 \V control loop }
Figure 4.3. Offline optimizatio e scaling gains scheme
4.2.4.2 Particle m Optimization (PSO)
The evolutionary algQyi PSO is an intelligence algorithm
based on swarm related to the social behavior of
animals, such group of birds or a swarm of fishes. It

uses the anir‘%l ehavior from three point of views: its
habits, ’it@ory capacity and its cooperation capability.

In P%g\he population is the number of particles in the
s}e?, which are initialized in a random way. The
peérformance of a particle is measured by an adjustment
value, which is specific to the problem. Thus, each particle
will have an adjustment value, which will be evaluated by an
adjustment function that will be optimized in each
generation.

The movement of the different particles is coordinated by a
speed that has magnitude and direction. Each particle
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position in any instance of time is influenced by its best
position and the position of the best particle. Thus for each
particle, is known its best position, also called "best local",
and the best position of all the group of particles, called "best
global". In each generation, the velocity and position of the
particles are updated as follows [5]:

V™Y = Dec(t)w;,V;, + Random,w;; (b; —

+Random,w, 2(b xﬁo%mm

XV = X, + VW s@' (4.41)

Where X is the current position and b; i best position

of the particle. b, is the best global po "25’ V, is the velocity

of each particle, Dec(t) is a decr \g function, and wy,,

w;, ,W;, are the weights of eac ponent The PSO is
summarized in Figure 4.4. Q

The optimization criterior@??he calibration (fithess function
in the PSO) for this the minimization of the ISE.

Figure 4.5 shows K& Scheme for the offline optimization of

the scaling g;@of the LSMC, in which the control loop is

simulated n,itefations until the ISE is minimized, meeting the

stop critg'}n?\ The restriction considered is the controller

outp &@ ues minimum and maximum), which will avoid its
on

fi@
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Initial Population
(particles with random
velocities and positions)

Evaluate Objective
Function

Chech if the
restriction is met?

urrent fitness value is better

than individual best? )
Update & p previous
individual best b; dividual best

Figure 4.4. Oﬁline@nizaﬂon of the scaling gains scheme
£
N

criterion
met?,

parameters }
@’ update LAMDA($) !
‘\3 ‘ Nonlinear !
| System |
| @ d |
Xq (1) + Sliding LAMDA(s , §) i
| Surface }
|
I
} [
! ontrol loop |

Figure 4.5. Offline optimization of the scaling gains scheme
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4.3 Adaptive LAMDA

In general, the design of the Rule-based LAMDA and LSMC
can be a time-consuming process, depending on the system
to be controlled, especially in the stages of scaling gains
tuning and in the definition of the classes and rules. Also,
these controllers do not have the ability to automatically
learn or be adaptive, because their internal values Jgclass
centers, exigency degree, and consequent param: é_;é& are
set at the design stage, and they do not cha ing the
operation of the control in the process. nge'r to solve
these problems, we propose a new metho% lled Adaptive

LAMDA. \(b

The background presented in secti .3, have motivated us
in this subsection to proposesﬁwew approach based on
LAMDA. The research contyl n consists in proposing an
adaptive learning meth or the LAMDA parameters
update, which allo "@ntrolling a system through the
detection of functi states, the theory on which this
algorithm is based without requiring the process model in

detail. >

Regardin’géh\e previous LAMDA controllers the advantages
of thiioﬁ)posal are the following:

e implementation of LAMDA as an identifier is
proposed for the first time, handling the concept of self-
adjustment of the exigency (a) and the antecedent
parameters used for the GADs calculation.

e A stability analysis of the learning algorithm is proposed
to guarantee a rapid convergence of the estimated output
towards the desired output.
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e The proposed scheme, with respect to approaches such
as those presented in [83,129,130], does not requires to
compute the output/input gradient of the system to be
controlled, which reduces the computational cost.

e This approach has a known number of hidden layers,
which is an advantage with respect to algorithms such as
those presented in [9,131], awvoiding the h%lstlc
definition of the number of internal layers.

e The proposed learning for LAMDA is bas \a hybrid
learning, which allows a quick con@ence to the
desired output, improving the |garming time and
preventing that solutions be trappeﬁ@ocal minima. This
is a great advantage over le g methods that only
work with gradient descent, h is generally slow [14].

e The modeling and con d@f nonlinear systems are based
on the concept of cl or functional states established
by the LAMDA th

4.3.1 Ad@ive LAMDA Model

The orig QEAMDA presents interesting results in
cIassn‘ma@ and clustering applications, however, for
mode 69 and control, the algorithm needs to work as a
‘3?6 or with the feature of online self-adjustment of

eters, for which the addition of layers and a different
learning method is required. In this work, the addition of a
first-order T-S fuzzy inference system to LAMDA is
proposed, due to the excellent results that this method
presents for modeling and control [132]. This methodology
establishes that the output of each class is represented as a
linear combination of input descriptors, plus a constant
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parameter. Finally, the last output is the weighted average
of each class output.

The implementation of the T-S fuzzy inference system
applied to LAMDA requires the addition of layers 3, 4 and 5
to the original model presented in Figure 2.1. Figure 4.4
shows the scheme for the adaptive model, which takes an
individual O for the computation of the outputs of eacl}gyer.

Layer 2 Layer 3 Layer 4

N\
QCQ Figure 4.6. Adaptive scheme for LAMDA

oIﬁg@cheme of Figure 4.6 corresponds to a MISO (Multiple-
Input Single-Output) system, with 5 layers, each one with a
specific function:

Layer 1: each node in this layer computes the
MAD, ;(0),py j, 0y,;) Of each descriptor j in each class k, as
described in (2.5). The set of parameters {p, ;, o) ;} must be
optimized, changing the bell shape by adjusting the classes
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of the model. These parameters are known as the premise
parameters of the LAMDA structure.

Layer 2: Each node in this layer computes the GAD, ; of
each class k through the aggregation functions and the
exigency «a (see (2.7)). This parameter must be optimized,
changing the exigency degree for the classes of the model,
and therefore, the linear interpolation between the j?lqorm
and t-conorm, which affects the behavior of the GA

Layer 3: In this node, the normalization ofﬁ%h GAD is
computed, with respect to the sum of all t for each
class. The normalization is performed b}é}
.,GAD - M
Q Z}r{n 1GADk 0
Layer 4: Each node of this lay&g)Corresponds to the result of
multiplying the NGAD, a first-order T-S function
H, () for the class k tha s the descriptors of the analyzed
individual, and itis @ed by (4.44). This function has n+ 1
d

parameters, that,i epends on the number of descriptors
of 0. These are known as consequent parameters.

00 Hk(O Ry, . hkj'" Ry k) =

a@@‘\e output of layer 4 is computed by:
fi (NGAD, 5, H,) = NGAD, 5H, (4.45)

NGAD, 5(GAD, 5, ..., GAD, 5, - (4.43)

Layer 5: This layer has only one node, which computes the
sum of all the inputs, returning the value Out;:

0ty (fyy oo frr oo fir) = ka (4.46)
k=1
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Using the previous expressions, the construction of an
Adaptive LAMDA algorithm based on the T-S inference is
proposed. This model must adjust the premise parameters
that correspond to the calculation of the MAD, ;, such as:
Pr,j Ok,j» the exigency parameter @, and the consequent

parameters in the functions: H,, ..., Hy, ..., Hp,.

The number of nodes in each layer depends on the ber

of descriptors and the selected fuzzy sets. Based fact
that all descriptors are considered to have the number
of classes "c"

, the total number of classes i c!, and the
number of nodes in each layer is, for Iayer&g}lc) nodes, for
layers 2, 3, 4: m nodes, and for layer S\@node

4311 Hybrid ‘Zt‘ng Algorithm

In the adaptive LAMDA, each\pode fulfills a function in a
unidirectional manner. e of these nodes have
parameters that are ed as a result of the learning
process based on t put and output data. In this process,
the hybrid learni S been considered. It consists of a step
forward and a backward that considerably improves the
learning t| preventing that solutions be trapped in local

mwma’@ [134].

@mposed learning has been studied in different works
e adaptive networks are designed [77,78]. In the first

stage, a forward pass is carried out with the least-squares
estimate (LSE) method to adjust the consequent
parameters, then a backward pass is performed using the
gradient descent (GD) algorithm to adjust the antecedent
parameters. The scheme of the hybrid learning is presented
in Figure 4.7, detailing the two steps for parameters update.
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Figure 4@ ybrid Learning Scheme
e Forwar
In the forward@a , the learning algorithm keeps fixed the
anteceoJ arameters 6 = {p, ;,0, ;,a} required for the
calcul of MAD,; and GAD,; in the layers 1 and 2,

r @tlvely, and the process goes forward until the
&ulation of the nodes NGAD,; in layer 3.

Layer 4 requires the consequent parameters for all the
classes ¢ = {C,,...,Cy,...,C}. Thus, the LSE is used for
the adjustment, considering that the function H,(-) is linear
in the consequent parameters. To demonstrate this, (4.44)
is developed, considering the d-th individual 0¢ =
[04,...,6¢,...,08] that produces the output Outf:
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Outf=fi+-+fi+-+fn (4.47)
Expressing (4.47) on the terms of H(-):
Outf = NGAD 5aH; + -+ NGAD gaH) + ---
+NGAD,, 5aH,, (448)
With:

Hy = {hyy,. ., hyjy o by} ,?/4.49)
where H, € R islinear in the consequent, for all esired
values at the output Out = [Out!...Out? @ Thus
(4.49) can be rewritten as:

Out = Ah \Q} (4.50)

If A is non-invertible, the pseudoinyéfse must be computed
with (4.51), which minimizes theghfference (||Ah— 0||?):

h = (ATA)- "W out (451)
The fact that an invers &rix must be calculated makes
(4.51) computational ensive (inour case it depends on
the class number ,§&sCriptors and output data used in the
training). For t ason, a sequential method is used to
calculate h, recursive method applied to time-varying
systems @the d-th row vector of matrix A, defined by a”,
and tth, “th element of Out, defined by Out?. Then, h is
it r@ey computed using the covariance matrix P(t + 1) as
WS:
P(k)a(k + 1)a’(k + 1)P(k)
A+aT(k+1DP(k)alk+1)

0 < 1 < 1is the forgetting factor and is chosen close to 1 to
achieve stability [135].

Plk+1) = /—1 [P(k) - (4.52)

Finally, h(k + 1) is computed by:
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h(k+1) =

h(k) + P(k + 1 ak + D[0ut(k + 1) — a”(k + 1) h(k)](4.53)
where d = {1, ...,D — 1}.

According to LAMDA model, if a data output set Out =
[Out...0ut®...0utP]” is available, then a supervised
learning process can be carried out, propagating backward
the error from layer 5 to layer 1 by the chain rulegbﬁ\fter
computing the consequent parameters r‘& +1).
Considering that Out? is the d-th data of the d‘;} outputs

Out, and Out? the output calculat y LAMDA
corresponding to the individual 0¢, the (;g n layer 5 is:

Ea(k) = 3 [0ut () ~ g0 (454)

For online learning, the aim iﬁf\ propagate backward the

error E,; , through each | eban each node, until obtaining
the derivative of the err,?% with respect to the adjustment

terms 6 = {pk],ak]§} quired in (2.5) and (2.7).
In this way, the Q stment of 6 in an instant of time (k + 1)

by the GD |s with (4.55), and the updated with (4.56):
4
O _ 0E (k)
(;3\ AO(k) = —n——7~ 3000 (4.55)

\l%’(k +1) = (k) + A0(K) + B(6(K) — 6(k — 1))

dE
U +ﬁ(9(k) 6(k—1)) (456)

where n € [0,1] corresponds to the learning rate, and S €
[0,1] is the momentum term.

=0(k) —
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The learning process using the GD method through the
backpropagation of the error E,; from layer 5 to layer 1 of the
scheme presented in Figure 4.6 is:

Layer 5:
) a 1
(6 =4 _ [—Otd—O t‘”]
€ a0utd 9outd 2( u uti)
= —(0ut®— outfl) 4.57)

Layer 4: From (4.46), the derivative of Outf \M&’iéspect to
ofy is:

o0utf ol +-fi o Sml QQ; m (4.58)
e i ; :

d d \

E 0

(4') _od 7 _(5) 4.59
€k ~ d0utf % —€ (4.59)

Layer 3: From (4.45), the d%L ive is:

Ofc _ 0[ONGADggX Hy ]
ONGAD, s ON&AD,;

0E, 00pis” of
D=1 Tk _ (®f vk =
€ aOWz?ﬁk TGAD, g~ € HiVi=1.m (461)

Layer 2: partial derivatives of layer 3 are calculated with
respe the outputs of layer 2. Because each node k of
la depends on all the outputs of layer 2, as shown in
fﬁl& , the term k, is used to refer to the nodes of layer 2.

=H; Vk=1,...,m (4.60)

((2;5; -1GADy, 5) — (;AD,CZ,(j

| ifik, =k
ONGAD (Zm—chDk 0)
kO { (4.62)
9GAD.5 | AD

| o0 k0 if:k, # k

U [z, 64D,
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m
@ _ aEd OOL afk aNGADk6

= g0d of, ONGAD,5 £i 9GAD, o (4.63)
" ONGAD
€D =e®p, WDkko'vkzl,...,m (4.64)

=
Layer 1: The partial derivatives of layer 2 are computed with

respect to the outputs of layer 1. Because the G are
calculated recursively by (2.7), itis used the term j¢Agrefer

to each of the nodes of the layer 1, in order @Q tate the
mathematical expression of the derivative. g\

OMAD,; \(2}
aT(MAD,,, ..., MAD‘%{Z?' MAD,,,)

+(1—a)(1—S(MAD,,, ...,MQ,W v MADy ) ) 5 Vjy # )
(4.65)
In (4.65), the derivat%‘&'GADk,Q respectto MAD, ; is equal
to the caIcuIatio@ GAD vvithout_ considering this term.
Now, the propa error in layer 1 is:
@ 964Do

e =
OQ “k OMAD,

(4.66)

The p\gfémeters Px,j» Ok, are adjusted in each class k and

descriptor j with equations (4.67) and (4.68),
espectively, and « is adjusted for all the model with (4.69).

omap,; (o, OE, IMAD
6 (O=p ’”)aMADk] 2 = 0 ki (4.67)
9, (Uk.]) P prs
2
oMAD,; (5, - py,; JE OMAD,
ki 2 =P gy ap, = OB _ (0OMADy oy
doy (Uk,j) doy doy
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dGAD, ;5
Jda

= [T(MAD,,, ..., MAD, ..., MAD, )
— S(MAD,, ..., MAD, ,..., MAD, )| =

m
6& Z @ 0GAD, 5

da k da (4.69)
k=1
Finally, the terms are updated as:
OF, >
(k+1)=p, (k) + (— )
Pl P 1 0Py ; "'\{i‘>

\
+B (s () ~ pk,é}l%\l (4.70)
d
0j(k+1) =0 () +1 <_a(idj) \"2>

+6(o, S—ak,,-(k—l)) (4.71)

alk +1) = all) +1 (— %@ + B —alk—1)) (472)

The proposed proc or online learning is performed at
every sample tim@{O

4.3@9 Adaptive LAMDA Control

As back d, it has been used the AIC strategy [86]. This
methq uires an offline learning by using random values
a Wing output, but also, the plant response to these
v;es as training input, as shown in Figure 4.8a. Here, itis
proposed to use the Adaptive LAMDA as an identifier,
applying a random input u(k) to the plant and taking the
output x(k + 1), its previous values [x (k); ...; x(k — q)], and
the delayed values [u(k — 1);...; u(k —p)] as descriptors.
The delayed network uses as inputs in the application stage:
the desired plant output and the current plant. With training,
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the internal parameters of the LAMDA model are updated to
minimize the error e, (k) through the process detailed in
subsection 4.3.1.1. The application stage is implemented
with the trained LAMDA model, as shown in Figure 4.8b.

u(k) > Plant > x(k+1)

==== ! x(k+1) {3‘;&

\ Q) h
(0 'bmg?r X("'qi \Q‘,’S\
Z'q
u(k-l --(k—p) Bl e}@
ral L
E* 2

a O
()’é

x(k+1)

SO

,\0
F'g% .8. (a) Block diagram of the training phase of the inverse
«,&\ | method, (b) Block diagram of the application phase of the

inverse control method
This model takes as inputs the desired reference x,..(k +
1), the states of the plant [x(k);...;x(k —¢)], and the
delayed values [u(k —1),...,u (k—p)]. The main idea of
this method is to estimate the inverse plant model based on
past and current plant outputs and inputs, to obtain the
feedback control. The selection of p and g depends on an
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estimation of the order of the plant. That is, the expert must
define how many states passed for the input and for the
output must be considered, for example, for a first-order
system would be required: p = 1,q = 1, for a second-order
system: p = 2,q = 2. This considering the number of poles
and zeros that the system could have.

4.3.1.3 Feedback Control with Ada,%ive
LAMDA

&
The feedback control scheme presented in \e 49 is
proposed to control systems with online Ie%%g.

Xref (K1) ——] - \\
x| LAMDA | |£&| u( R
Controller E (@ X(et1)

Hea) A p
Y 7, \ ‘

*\ el \ :(: +1) l

uke) | - ulkep) ‘ LAMDA ® 7t |
Ss o ) Identifgr | gy !

|

par 7 —— 74 |

u i ukd T Fulep) !

257 T |

- I
S ||
(o) ‘ |

ra : !

$ \V { ‘

® A T P
(on-line inverse learning)

N
Fi@ec%.g. Block diagram of the online inverse learning control
with Adaptive LAMDA
Once the model has been trained, as shown in Figure 4.6a,
initial parameters are set in the identifier. In the application,
the identifier is trained online in a supervised manner with
the hybrid learning of Figure 4.5. A duplicate LAMDA is used
as controller, considering now the desired reference
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Xrep(k + 1), updating its internal parameters in each sample
time based on the learning performed by the identifier.

Due to the online learning, the proposed scheme is able to
bring the system output to the reference even in the
presence of disturbances, or when the dynamic of the plant
is variable.

43.14 Convergence of the @)@ﬂng
algorithm

For online learning, it is used the hybrid algorgg' presented
in subsection 4.3.1.1. In each iteration of losed-loop of
Figure 4.9, the antecedents and con nts are adjusted
with the aim that the LAMDA outpu Xverges to a desired
value.

that the stability of the s is guaranteed by complying
with the restrictions &Melyzed in detail and proven in
Theorem 2 presen n Appendix E which is part of our

As a fundamental contributi;n our work we have shown

paper [136], i ich the Adaptive-LAMDA method is
discussed in r depth. The conditions are:
AN 2
’\0 0<n< (4.73)

3(Ny + Ny + N,)

@(k) > 0:

0<p<
2e (k)

3<(6(;1;t§((k)) APGe— 1) +(%) e -1)+(%) Aa(k—l))

2e(k)
e, () (Jlalk + D)2

0<tr(P(k+1)< (4.75)
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For e,.(k) < 0:

0<pB<
—2e(k)
(4.76)
d T d T d
3 ((—h—ag’f k(k)) AY(k—1) + (—h—a%zf k(k)) Ak — 1) + (—h—agzt k(k)) Aalk — 1))
—2e(k)
o<tr(Pk+1))< ; e, <0 77
(PUe+ 1) < 3o 00 (at + DT,)? &y
Where: Q’}\
e, (k) = Out(k + 1) —af(k+1) (4.78)

Q0u () td (k) 2

@%% (4.79)

And the terms of antecedent in vector form
corresponding to enters are grouped in Y(k), the
standard deviatiori\ the classes are grouped in ¥ (k) and
the conseque rameters are grouped in the matrix h(k)
as foIIows

y‘%& (P4, 1 (), s P1,j(k). P21 (k), ..., Pz,j(k), o
\l P (), woes Py j (), ey P (RD]T (4.80)
Y(k) = [01,(k), ..., 01 (K), ..., 051 (K), ..., 03 ; (KD, ..,

011 (K), ovry 03 (KD, vy Oy (B)]T (4:81)

hyy « hyj o hyy Ry
h(k) = [her o hgj oo hgn By (4.82)
N R
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Equations (4.73)-(4.77) guarantee the convergence of the
error e(k) — 0 inthe training stage for a controllable system
independent of the application, system order, number of
inputs and classes.

Some considerations must be taken into account to
determine the stability of the entire system:

e As mentioned in [9], analyzing controller stabili @sed
on online learning is a complex task that is stj open
t

field in adaptive inverse learning schemegi@hat will be
addressed in a future work. Howevg; e following
aspects can be considered for local gtabiity:

e Bounded Input-Bounded Outpu éBO) Stability: BIBO
stability is guaranteed. The ;g?(&llization of the GADs,
through the computation o normalized NGAD, 5 < 1
and the introduced li '@.s own in Figure 4.9, ensure
that the adaptive LA model is bounded for all inputs.

e Itis assumed ttég?]e learning algorithm in the LAMDA
Identifier ha {onverged because a constant change in
the param@r would make it hard to analyze stability.
Unde;& assumption, it is only necessary to take the
LA%g controller into account. If the error of the learning
%«q rges e(k) — 0, then the LAMDA model is an
jtentical copy of the real process, so it is guaranteed that
there is a solution to the inverse model, allowing to
calculate a control action u(k), which satisfies x(k + 1) =
Xpep(x+ 1).

4.4 LSMC based on Z-numbers (ZLSMC)

In subsections 4.2 and 4.3, two new controllers have been
formalized: LSMC and Adaptive LAMDA, respectively.
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Based on experiments where the controllers have been
tested in different nonlinear systems, only one of these
proposals has been selected to apply the theory of Z-
numbers as it has been proposed in the scope of this work.
Considering the controllers described in subsections 4.2 and
4.3, the decision has been made to apply the Z-numbers
theory to the LSMC controller based on the following

considerations: f&
&

e The computational complexity detailed in u@%}tion 5.3
shows that LSMC is less computationall hsive than
Adaptive LAMDA. é

e The characteristics of SMC applied‘&LAMDA make this
controller a robust and chatteri@ee proposal.

e The Lyapunov theory gual es a stable controller in
LSMC and stable learrj@)in Adaptive LAMDA; however,
LSMC does not reqy’& learning phase.

The Z-number thez@g}ecent and is expanding into the field
of control syste ue to the great potential it can offer. In
this work, it h@» en considered that the management of
the reliabiIierelated to the error (deviation between the
refereng d the current output of the process) can help to
rea reference in a faster way to large errors, and it is

ggressive for small errors. The proposal is called
LSMC based on Z-Numbers (ZLSMC).

In some applications, the Z-numbers can be represented
with the restriction and reliability of two singleton functions.
In order to compute the TU of singleton functions of Z-
numbers we propose the Lemma 1.
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Lemma 1. The TU of a fuzzy number with two singleton
functions is equal to the product of the functions TU(Z) =

P1P2-

Proof. According to (2.23), the TU is calculated based on
the centers and variances of the two fuzzy numbers. From
(2.12), if o, = 0 and o, = 0, then the Gaussian functions
behave similarly to singleton functions (impulsive re%nse
in the centers p, and p,), therefore:

TU(Z) = TU(Az Rz) = P1Pe \
’ (1+ 80,%)( @U 2)
P1P2
AT 8x )+ 8R0) P2
Being the proof demonstrated co@tely. The final result
obtained in this operation Q@ coincides with the
presented in [137]. Lemma 2 ful for the formalization

(4.83)

of the ZLSMC controller, ifically in the calculation of the
new centers of the s and for the calculation of the
controller output b on the GAD and reliability as detailed

below.
R
{\

“4; .1 Formalization of ZLSMC

@Startmg point, it is considered to use the Gaussian
mktlons to compute the MAD as presented in (2.5). This
expression is similar to the one presented in (2.12), therefore
the restriction in the case of LAMDA corresponds to MAD,
thus u,, = MAD, ;. Also, it is necessary to measure the
reliability parameter for ug, procedure that will be detailed
later in the document for continuous and discontinuous
control actions. With the two parameters of a Z-number, then
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it is feasible to compute the TU of each class of the control
system. LAMDA identifies the current state of the system
and takes it to the desired state. For this purpose, it is
necessary to define rules based on the system knowledge,
which is also carried out in conventional fuzzy controllers.
The analytic expression that generalizes (2.11) for the k-rule
of the Z-fuzzy logic inference system considering the classes
in LAMDA is represented as follows: o3

Rule®™:IF o, is 7} and ... o; is Z! ...and o, is {{Q}{\

THEI‘&S Zk  (4.84)
where Rule® is the rule applied for tb&c ass k, o; is the
descriptor j of the object O that (a\kés values from the
universe of discourse U;. The OLA@E inguistic variable y, is
defined on a universe of disc V. Z] = (4],R) denotes

de Z-number for the des r j and the fuzzy set ¢, and
Z¥ = (v, Ry) isthe co ent Z-number.
In the LAMDA co it is proposed to use the Z-number

concepts to im the controller response, thus rewriting
(4.84) for two s (descriptors) it is obtained:

Rzlle(k)’.{@)1 is (MADy 1, gy ) and 0, is (MADy 5, figyy)
\:@K THEN yyis (o R,) ~ (485)

The TU is used to compute the new centers of the MADs
and itis used at the output to recalculate the weights applied
to the GADs, making them adaptable as a function of the
sliding surface s and its first derivative $§ which are the
descriptors of the proposed approach as detailed as follows:
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The same procedure for the design of LSMC is used for the
design of ZLSMC (see from (4.5) to (4.21)).

e Continuous control action:

Based on (4.21), it is necessary to compute u.to obtain
s(t) = 0, for which it is required to know only the sign of the
function b(X(t),t) associated with u, and to set the rules for
the classes of LAMDA. In (4.21), it can be see t if
b(X(t),t) > 0, then $(t) decreases as u, incr%g , and
vice-versa. With this information, a set of clas&gmnd rules

to obtain $(t) = 0 is established. <
Five classes C € [—1,1] for $(t) are u his, supported by
the sensitivity analysis performed 4 bsection 5.2.1.2.1

three or seven classes doe t significantly affect the
performance of controller @se on LAMDA and the only
required consideration A3wan adequate calibration of the
scaling gains. The f Sets for the classes of the variable
s(t) are Negativez\@g (NB = —1), Negative Small (NS =
—0.5), zero (Z ), Positive Small (PS = 0.5), and Positive
Big (PB = ese classes are used to define the rules to
comput é\normaﬁzed continuous control action u,,.. For
prop@ibraﬁon, the scaling gain k, is used for the input
%&Qﬁ d the scaling gain k. at the continuous control output
as:

and detailed in [138] where hasgﬁe shown that selecting

u, = kg, = u, =k, ZLSMC(S); k. >0 (4.86)

The rule table corresponding to u, where the measure of
s(t) is required as shown (4.21) is presented in Table 4.4
considering €, = (v, R.); Vk = {1,2,...,5}.
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Table 4.4. Rule table of ZLSMC for $(t)

5
NB,S NS,U ZA PS,U PB,S
b(X, 0| C [ Cs Cs Cs
>0 | =NB,R.| =NS,R,| =ZE,R. | =PS,R, | = PB,R,
b(X, 0 | [ Cs Cs Cs
<0 | =PB,R.| =PS,R,| =ZE,R. | =NS,R.| = NB,R,

For the computation of the u,, the classes per descri and
the membership functions of the reliability are pr ted in
Figure 4.10. Note that for the reliability par%@ absolute
value of s is used. In [91] is proposed the& lishment of
three classes to represent reliabilityi™“a simple and
complete way for control systems\ ese are: “S” is
“sometimes,” “U” is “usually,” and ¢ “always”.

1

07 0:? 0.9 1
(éae (b)
Figure 4,40. Wlembership functions for: a) MADs of 5(t), b)
. ’0 reliability of [$(t)]

To d ﬁ‘& the rules in Table 4.4, when b(X(¢t),t) > 0 and
@ on (4.21), it is noted that $(t) decreases as u,
inCteases, and vice-versa. This information is sufficient for
the rules definition to satisfy s(t) = 0. For instance, if s(t) is
PB, then large positive control action u, is needed in order
to decrease quickly s(t), and the reliability |s(t)| is assigned
with a value sometimes "S" whose center is in 0.6. This
causes the center calculated with the Total Utility to move to
the left, which in fuzzy control means a more abrupt control
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action that causes a rapid decrease of s$(t). If s(t) is NB,
then the error and its derivatives are close to zero, then a
small positive control action u, is needed in order to
decrease slowly s(t), also, in order to obtain a smoother
control action, the reliability is assigned a value usually “U”
whose center is in 0.8. Finally, if s(t)=ZE (desired
condition), then no control action is required, thus u, = ZE
and the reliability is assigned a value always “Al\ghose
center is in 1. Therefore as $(t) is close to zero, Q& ontrol
action is smoother. As shown in Table 4.4, using the
value|s(t)|, the same previous analysis i for the NB
and NS classes.

On the other hand, when b(X (¢t),t) Q/&md based on (4.21),
it is noted that $(t) decreases u,. decreases, and s(t)
increases as u, increases. Th&(gfore, as observed in Table

4.4, only the sign of the r @'ﬂon changes and the criterion
to define reliability is the%we for the case b(X(t),t) > 0.

In the ZLSMC, W@criptors at the input of LAMDA are
used, therefore ) is computed for s(t) and its derivative,
that is j = 1 fo(?) and j = 2 for s(t). The calculation of the
new cla: ters is made based on the TU, ;(Z) applied to

the d tor s(t), replacing the LAMDA restriction and
r i@jﬁty in (4.84):

Pr,1Cr
R) = 1Ry 487
) (1+ 80;,,2)(1 + 80g,?) (4.87)

where R, = Gauss(cg, ,0,) is the reliability of the MAD, .
Unlike works that address the control with Z-numbers

[91,102,103], the reliability at the output is not defined, in this
work is proposed to compute its weight value as [137]:

TU,1(Z) = TU(MAD,,,
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[ 1slurags))
=1
INTETED)
From (4.84), it is used the R, and the singleton values y,.

The Total Utility of the Z-number at the output can be
denoted as:

(4.88)

vE =¥ XR, 4.89)
Then, the output of the control action u,,, basecbﬁ@ (4.9

and (4.134), is computed as:
;& ADkO (4.90)

e Discontinuous control ac Ié\ﬁ’

_arg max(y)
1 Yk GADk max(0)

Upe =

Based on (4.26), it is neces to compute u, to satisfy
s(t)s(t) < 0. Asinthe ca&@tontinuous control action, five
classes are set for ea put s(t) and s(t) based in the
scalability analysis @ nted in [138] and three classes for
the reliability as & nted in [91]. Due to the normalization
of the classe omputed u,,, therefore, the scaling gain
k, is adde the input s(t), and the scaling gain k, at the
dlscontn\ﬁ&xs control output as:

g = Uy =k,ZLSMC(s,3) ; ky>0 (491)
P§ the computation of the discontinuous control action
based on Z-numbers, it is addressed the case b(X(t),t) > 0
since in the opposite case (b(X(t),t) < 0), only the sign of
the classes changes in the restriction part as detailed in the
definition of rules of Table 4.4. The centers of the Z-classes
are presented in Table 4.5 considering C, = (y,,Ry) ; Vk =
(1,2, ...,25}.
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Table 4.5. Rule table of ZLSMC for s(t) and $(t), b(X(t),t) >0

s() 5(t)
NB,S NS,U ZE.A PS,U PB,S
PB S CS ClO C15 CZO CZS
S | ZzE,R, | =ZE,R; | =PS,Ry| = PB,R,| = PB,R,
PS U C4 C9 Cl4 Clg CZ4
V| ZzE R, | =2E,R, | =PS,R,| = PB,R,| = PB,R,
ZE A C3 C8 Cl3 C18 C23
A | =NB,Ry | =NSRy | =ZE,Rq| =PS,Ry| =PR,Rq
NS U CZ C7 ClZ C17 ‘\ g
YU | ZNB,Ry | = NB,Ry | =NS,R4| = ZE, B> ZE, R,
Cy Ce Ci1 Ci6 5} C21
NB.S | —NB,Ry | =NB,Ry | =NS,Ry| 8R4 = ZE, Ry

\V

For the computation of u,, the classe )@descriptor and the
membership functions of the relighftity are presented in
Figure 4.11. Note that for the bility part, the absolute
values of s and s are measugednsince itis considered to give
more weight when|s| an re far from zero.

07 08 09 1
Is

(b)

0.7 0.8 0.9 1
s El

(c) (d)
Figure 4.11. a) Membership functions for: a) MADs of $(t), b)
reliability of |$(t)|, c) MADs of s(t), d) reliability of |s(t)]
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In the Z-LSMC, for u, are used the two descriptors at the
input of LAMDA, therefore (2.5) is computed for s and its
derivative, that is j = 1 for $(t) and j = 2 for s(t). Then, the
calculation of the new class centers is made based on the
TU;(Z) as:

Pr,1CR, (4.92)

TUy,(2) = TU(MAD 1, R, ) = (1+80;,,2)(1 + 80y, 2)
1

Dy 2C
TU,,(Z) = TU(MAD,,,R,) = 70, ’;;é: - ’Q’ 4.93)
k2

The reliability at the output is computed as t ight value

as proposed in [137]:
1.
(N
1

fo liR1(|§b(‘\ folﬂRz(lsl)

It is proposed to choose thteaximum value of the two

R, = arg max ( ) (4.94)

reliabilities to obtain a m gressive control action when
the surface or its derival are far from zero (the error is big)
to take the system towards the reference.

To define the r of Table 4.5, the following analysis has
been conside

o If s('t)@ and u, increases, then the product s(t)s(t)
es and vice-versa.

\EQ&(t) < 0 and u, increases, then the product s(t)s(t)
ncreases, and if u,; decreases, then s(t)s(t) decreases.

From this analysis, itis proposed to generate a control action
u, to satisfy s(t)$(t) < 0. As has been described for the
continuous control action, the case of the discontinuous
control action is similar, that is, S is associated as reliability
to classes PB and NB, U to classes PS and NS and A to class
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ZE in order to generate abrupt control actions when the
surface and its derivative are far from the desired value and
smooth control actions when they are close to zero.

From (4.84), it is used the weight of the reliability R, and the
values y,. The TU at the output can be denoted as:

14 .= Ve X Ry (4.95)

Then, the output of the control action u,,, based @{2?21 4),
and (4.95), is calculated as:

arg max(y,,)

Zl= 1Yk GADk,max(G)

Z Q%L (4.96)

This approach removes the chatterc%of the SMC replacing
the discontinuous sign function the rules and classes of
LAMDA. The overall control a@n is computed as:

u=k ZL%(E(KQ + k ZLSMC(s, $) (4.97)
The ZLSMC schem own in Figure 4.12, detailing the
blocks of the ,@lroller applied in the continuous
(ZLSMC.(3)) iscontinuous (ZLSMC,(s,s)) parts, the
descriptor in each LAMDA block, and the scaling
gains |r; <$puts and the outputs.

QQ;«% Z-LSMC($) B
(1)

X4 (t) | sliding =

’—P Surface | s(t)

Upg =

Nonlinear
System X(t)

Z-LSMCq (8, ) u=ug+ Uy

Figure 4.12. Block diagram of the ZLMC

Finally, the stability analysis is the same as LSMC shown in
the subsection 4.2.3.
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5. EXPERIMENTATION AND RESULTS

5.1 LAMDA in classification and clustering

tests

5.1.1 LAMDA-HAD in classification process

To analyze the performance of the LAMDA-HAD alg@sithm
and validate the proposal, two types of tests are rmed:

e A comparative analysis between LAMDA- and other
well-known classification methods, a d to several
balanced and unbalanced classific@ enchmarks with
different characteristics. ‘%’

e A comparative analysis bew\@w LAMDA, LAMDA-HAD
and the classifiers with theSaést performance, to test the
skills of the methods f@% identification of new classes.

Additionally, in AppergiéB and [105], a detailed comparative
analysis between DA and LAMDA-HAD is presented,

applied to th rementioned benchmarks where the
improvements esented by each of the proposed
extensigr@e exhaustively analyzed.

N\
{73 5111  LAMDA-HAD validation

F& AMDA-HAD validation, MAD uses the Fuzzy binomial
function. GAD uses a Hammacher operator, and the
exigency is set to @« = 0.9. The algorithm is tested in some
classification problems from the UCI Machine Learning
Repository [109], and benchmark datasets from [139,140],
with different number of data, attributes, and classes C;.
Table 5.1 reports the characteristics of the datasets, and in
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Appendix A, two-dimensional graphs of the datasets are
shown using the t-Distributed Stochastic Neighbor
Embedding, method used for High-Dimensional Data
reduction (tsne function in Matlab).

Table 5.1. Datasets used to validate LAMDA-HAD

Characteristics number of
instances in each class

3 classes correspc:(r@é\/lo
. types of Iris plant 0sa,
Iris 150 4 versicolor, virgi SS
C1=50,' C{ ] ;C3=50.
2 classes @responding to
Brest type: ancer (benign,
699 9 .
Cancer mal ).
G 58; C, = 241.
(@classes corresponding
types to 2D Gaussian

R15 600 g& 2groups that are positioned

Dataset Size Features

in rings.
Cl =CZ= =C15 = 40.

C) 3 classes corresponding to
Wine type 17 (\ 13 three types of wines.

o

N

7 classes corresponding to

$ Q types of lens.
Glass ’\0 214 10 €1 =70; C;=76; (3 =17;
& Cy=0;C5=13;C= 9;
1 $77) C,= 29.
NS 3 classes corresponding to

types of wheat (kama, rosa

Seeds 210 7 and Canadian).
€, =70; C,=70; C3 =70.
3 classes corresponding to

Wholesale 440 3 types of clients of a

costumers wholesale distributor.

C, =77; C, = 47; C5 = 316.
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6 classes corresponding to
types of red variant of the
Wine Portuguese "Vinho Verde".
quality 1599 L e =105 ¢, = 53; C3=
681;C, = 638; C5 =
199;C, = 18.
15 Gaussian classes of
; ; 0
s2 5000 2 synthetlc_ data with 22% of
overlapping between them.
ClzCZz"'zcls"' .
7 classes corres g to
the indoor Iocqg‘9 ased
Wireless on wifi sig ngths
Indoor 2000 ! observed g%wartphone.
Localization C; =508; C; = 500; C3 =
500; By 500 .
4
To test the classifiers, the k—@ross validation with k =
10 is implemented, wh eyo o random samples of the
datasets are used i training process, while the
remaining 10% of th ples are used for the test. k = 10

is a value that ha§obeen found through experimentation,
which gives r, Qs with low bias and modest standard
deviation. e%vantage of k-fold cross validation is that all
the sam in the dataset are eventually used for both,
traini d testing. Other validation methods like those
gﬁed in [141] allow making a more efficient cross-

ation of classifiers. However, for the comparison of the
presented algorithms in this work, the standard cross

validation technique is enough because it does not introduce
any perturbation to the results.

The algorithms used for the comparison are: LAMDA,
LAMDA-HAD (LM-HAD), LDA (Linear Discriminant Analysis
[142]), NN (Feedforward Neural Networks [143]), SVM
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(Support Vector Machines [144]), NBC (Naive Bayes
Classifier [145]), DT (Decision Trees [146]), and RF
(Random Forest [147]). The consigned results of the
aforementioned methods correspond to own experiments,
using the Matlab software toolboxes, applying cross
validation to all of them. Most algorithms do not require an
exhaustive parameterization, but in the cases in which it has
been required, a heuristic calibration has been carri d&;t to
obtain the best possible results, to perform a fair c rison
between the methods. s\Q‘;

The results of the mean value of the cros&ﬁdation (V) of
F-measure and Accuracy are u @%to evaluate the
performance of the algorithm (se%?& les 5.2 and 5.3)
respectively, where the algori that got the highest
classification metric is standing%étl in bold text, the second

best one is standing out i egue, while the third best one is

standing out in red. the standard deviation (o) is
presented to evalua dispersion of the data. To more
clearly observe performance of the algorithms, in

Appendix B, @analysis of the classifiers is presented
based on t C (Receiver Operating characteristic) and
AUC (Ar nder the Curve) curves, parameters used in the
diagngSue field. of classifiers.

I%’ 5.2 shows that, based on the average values LAMDA-
HAD is the third best behind RF and LDA. The results of F-
measure in most cases are very close to the values obtained
with the best algorithm, which allows to conclude that the
proposal presents a very good performance considering that
this metric is a combination of Precision and Recall.
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Table 5.2. Average F-measure (%) of LAMDA-HAD and other
classification algorithms

LDA| NN |swu |NBC| DT | RF |[LmD| M-

HAD

— |[5] 098|095 007 | 096 | 0.95 | 0.94 | 0.78 | 0.97

S 570,010 [ 0.001 [ 0.005 | 0.003 | 0.016 | 0.008 | 0.019 | 0.005

B| 095 | 0.96 | 0.35 | 0.96 | 0.93 | 0.97 | 0.42 | 0.94

Breast I 1 011 [0.009 | 0.001 | 0.013 | 0.010 | 0.019 | 0.033 | 0.008

7] 009 | 0.77 | 0.09 | 0.99 | 0.99 | 0.99 | 0.937%0.99

R15 570,001 [0.010 [ 0.001 | 0.001 | 0.001 | 0.001 | 0,0683~ 0.001

Wine- [»] 098 | 093 [ 0.42 | 097 [ 0.92 | 0.9g LHg2 | 0.95

Type | |0.006 [0.012 | 0.055 | 0.008 | 0.017 | 0.00AJ€.024 | 0.009

7| 051 | 0.36 | 052 | 0.50 | 0.64 Q’!ﬁ) 0.37 | 051

Glass 15,052 [ 0.041 | 0.026 | 0.030 | 0.065 | 5612 | 0.041| 0.052

4o | 7] 0-96 [0.87 [0.90 [0.01 | GO 0.0 | 052 | 0.02

Seeds 10 008 [ 0.004 | 0.008 | 0.006 /007 | 0.004 | 0.007 | 0.009

Whol |21 0-20 [ 029 [0.28 [ 038 52 [ 0.29 [ 0.21 [ 034

" [ 0.017 | 0.019 | 0.019 | 95| 0.058 | 0.042 | 0.047 | 0.025

Wine |21 022 | 0.30 | 0.1, %96 [ 0.52 | 0.36 | 0.23 | 0.0

] 0.052 | 0.012 | 098840.042 | 0.029 | 0.010 | 0.031| 0.07

<y | @] 09 |04 |7BDT [0.67 | 0.96 | 097 [ 002 00

| 0.005 | 0.0D% })3.006 | 0.002 | 0.006 | 0.003 | 0.007 | 0.004

Wire- || 0.95 | %d | 0.78 | 0.96 | 0.95 | 0.95 | 0.86 | 0.95

less [ |0.006{ 8005 | 0.002 | 0.003 | 0.004 | 0.001 | 0.004 | 0.002
*The detailed valueﬁae resented in [105].

Accurac another important metric to evaluate the

perfor e of the algorithm. These results are shown in

T t@?ﬁ.& The accuracy is computed to know inwhich cases
algorithms are able to detect imbalance situations.
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Table 5.3. Average accuracy (%) of LAMDA-HAD and other
classification algorithms

LDA| NN |SVM [NBC | DT RF | LMD LM-

HAD

— |w] 099 | 098 | 005 | 097 | 0,96 | 0,96 | 0,81 | 0,98

NS 5 0.001 [0.005 | 0.001 | 0.003 | 0.002 | 0.005 | 0.01 | 0.001

5 T 096 | 0.06 | 0,41 | 0,96 | 0,94 | 0,97 | 0,51 | 0,94

reast - 1.007 [ 0.005 | 0.007 | 0.006 | 0.004 | 0.005 | 0.035 |.0.006

15 |71 100 [087 [ 1,00 [ 100 [ 1,00 | 100 [ 0.850¢F00

& 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | q085] 0.000

Wine- [%] 099 [ 097 | 0,62 | 0,98 [ 093 | 0,9 fAB4 | 095

Type | o [0.001 [0.003 [0.025 [0.004 | 0.06 | qag;}0.012 | 0.004

Glass || 0:88 [ 0.82 [ 0,89 [ 082 | 0.00 | Q3 [ 072 | 0.82

| 0.042 | 0.041 | 0.002 | 0.004 | 0.Q07p40.007 | 0.032 | 0.011

7] 098 | 090 [ 094|093 ][0 09 [ 073093

Seeds |- 5501 [0.005 [0.006 | 0.00 "&07 0.005 | 0.017 | 0.007

Whol 121021 | 065 [ 0,81 0,693 0,70 | 0,79 | 0,43 [ 0,49

“ [ [0.021 | 0.038 |0.021 4 | 0.065 | 0.033 | 0.041 | 0.023

Wine 12087 | 086 Oé»o,?s 087 | 090 | 0,66 | 0,77

o |0.036 [ 0.039 0.069 | 0.058 | 0.031 | 0.051 | 0.043

7| 097 0,5@:%:57 097 | 0,96 | 0,97 | 0,96 | 0.7

2 "5 T0.017 [0, 0.021 | 0.012 | 0.018 | 0.002 | 0.002 | 0.015

Wire- | 9| 0,95 4095 | 0,77 [ 0,95 | 0,95 | 0,98 | 0,89 | 0,96

less [ o |0.0#5y.011 | 0.032 | 0.012 | 0.012 | 0.001 | 0.022 | 0.021
*The detailed esdre presented in [105].

>

Based ééﬂhe results of the Table 5.3 and taking into account
that th etric is valid for the cases in which the classes are

ed, it is observed that the algorithm is the third best
behind LDA, in first place, and RF and SVM, in second
place. This analysis has been based on the number of times
that the algorithms rank first, second and third in relation to
the average value. The results where LAMDA-HAD
decreases its performance are the datasets: Glass,
Wholesale Costumers and Wine Quality. The proposed
algorithm allows identifying the imbalance in the classes,
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what other approaches cannot because they have a high
value for the accuracy. Asdiscussed above, the accuracy is
not recommended when the classes are unbalanced.
Therefore, in these cases, F-measure shows adequately the
performance of the classifier. F-measure is used for
unbalanced datasets and accuracy for balanced datasets.
These results are presented in Table 5.4, showing the
relative error between the result of the best classm%@sed
on the average value and LAMDA-HAD.

Table 5.4. Relative error between the highest va%\ etrics and
LAMDA-HAD metrics

Dataset Metric Best L - Relative

Value . Error (%)
Iris Acc. 0.9867 |¢r9822 0.4561
R15 Acc. 0.9996/\" 0.9993 0.0300
Wine Type Acc. 0.9885y ] 0.9545 3.4396
Seeds Acc. OO%78° | 0.9311 4.7760
s2 Acc.  J {0726 | 0.9700 0.2673
Wireless AcC. (~$0.9849 | 0.9555 2.9851
Breast F-meay| 0.9692 | 0.9403 2.9818
Glass Eh&d | 07138 | 0.5139 28.005
Whol. WSghea. | 0.3372 0.3372 0.0000
Wine Qualn;\x\ $F-mea. | 0.3644 0.2987 18.029

0

Tabl §9{ allows to observe that the performance of LAMDA-
Qs comparable to the performance of the classifiers that
perform better. Low relative errors show that the new
algorithm has a high performance in tasks of supervised
learning, and greatly improve the performance in relation to
the original LAMDA in all cases (see Tables 5.2 and 5.3).

There are two specific benchmarks: Glass and Wine Quality,
in which LAMDA-HAD has the largest difference, which are
due to the distribution of data in descriptors that do not
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provide relevant information for an adequate classification.
In the other cases, the difference does not exceed 0.0467 in
relation to the best classifier.

5.1.1.2 Testing algorithms  for the
identification of new classes

In this test, a Wireless dataset is used [109,148], which
consists of data collected to perform experimentation %how
wifi signal strengths can be used to determine locaidhs. The
dataset has 2000 data instances with 7 des@; ors each
one, corresponding to wifi signal stren%ga served on
smartphones, used to identify 4 locatjohs (classes). To
perform the classification, the fo g procedure is
considered: Data belonging to locations (classes
C,,C, and C,) were selected for i@ raining stage, while the
data of the other location (cl 3Q3), combined with the other
classes, was used for th dation stage (see Figure 5.1).
The training stage wa @rried out with 90% of the database
of the three classe the remaining 10% of the data and
the location not n into account during the training stage,
were selected the validation stage. This test is done to
validate th(&bility of the algorithms for the identification of

e

S
A\

@ Locations (Classes Cy, Cy, C,D Cl New Location (Class C3 ))

C 90% training data) Clo% validation data

|
|
|
|
\
|
|
|
|
\
|
|
|
|
|
\

Figure 5.1. Database partitioning for new classes identification
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During the training stage, the data of class 3 have not been
considered as shown Figure 5.1. The obtained results in the
validation phase, in which those individuals have been
considered are shown in Figure 5.2. With this experiment,
the behavior of LDA, RF, LAMDA and LAMDA-HAD is
observed when they are tested with data that did not belong
to neither class in the training stage. Additionally, Figure 5.2
shows the process of assignment of individuals. Itsw the
different results for each algorithm:; {\

e the individuals who have not been %@éd are the
correctly assigned;

e the misassigned data are mar\% in green;

e the individuals sent iryg((%ctly to the NIC are
marked in red; Q

¢ and the data mar@n black are considered part of
a new clz{%‘bautomatically identified by the
algorithms.o

In the case o , the elements of class 3 were mostly
assigned toclass 1 and 4; on the other hand, in the case of
RF (whi the previous experiment presented a perfect
classi @tlon), now the majority individuals of class 3 have
b signed to class 2, that is, the algorithm found greater

ilarity of that data with respect to that class. LAMDA has
been able to identify a new class, however, there are errors
in the assignment of individuals, especially in classes 2 and
4, which is not appropriate. Finally, LAMDA-HAD is the
algorithm that performs the best identification, allowing to
observe several interesting features, which are:

111



e The algorithm has correctly identified all the elements of
classes 1, 2 and 4.

e |t has identified the most individuals of a new class
(assigning them to class 0 that represents the NIC).

e There is an incorrect assignment of certain individuals,
but with a lower percentage with respect to the other
algorithms. In particular, LAMDA-HAD is able (Lg&arn
and identify new classes in the testing stage. (\

0 50 100 150 200, ] 50 100 150 200
Mumber of incoming data {n) 6 MNumber of inceming data {n}
-~

LDA RF

4

w

)

Class (k)
o
Class (k)

P i

Fl v e p—

g £
£ ——% g 24 —
= -]
Q { Correctlysem 2
ﬁ—Q e f” 1 Sevaaed Correctly sent

P d

i clasy)

0 = - o = ]

& 200 0 50 100 150 200

Mumber af incoming data (n) Mumberof incoming data (n)
\@ LAMDA LAMDA-HAD

Figure 5.2. Classification results of new classes identification

Note that the comparison is not fair because LDA and RF
cannot detect new classes, however the comparison is
useful to identify one of the main advantages of the algorithm
which is to identify classes not considered in the training
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5.1.2 LAMDA-RD in clustering process

In this subsection, the experimental tests in different
clustering tasks are presented. The goal of the experiments
is to validate LAMDA-RD, analyzing the cluster quality and
its performance. The following tests are carried out:

i. A general validaton among LAMDA-RD, original
LAMDA, and other well-known clustering methodszgsted
in different benchmarks, making a comparative\%alysis
of the quality of the results. In a first test, t istics for
clustering validation that handles the &m@ ion that the
labels of the clusters are unknown is puted. Then,
the evaluation is performed consi the intrinsic and
extrinsic characteristics of the @tained model. These
metrics are: Silhouette Coeffi{?;ht (8C), WB-index (WB),
and Performance Coefficiéqt (P,) based on SC. Metrics
as: Modification of the uette coefficient (SILA), Sum-
of-squares within sters (SSW), Sum-of-squares
between clusteé%SB) are presented in [107]. In a
second test308 datasets with labeled clusters to
compare @Q formed partitions performed by the
algorixh(& against the real classes is presented; this is a
sta d@ evaluation procedure for clustering used to
cd%.lte the Rand Index (RI).

ﬂ’.‘lA comparative analysis in a streaming data scenario
among LAMDA-RD, LAMDA-TP and the algorithm called
“Autonomous  Data-driven  Clustering  for  Live
DataStream (ADDclustering) [149] is presented. This
algorithm has been selected since it allows online
clustering, a characteristic to be considered in order to
make a fair comparison with LAMDA-RD. In this
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experiment, the individuals are acquired from streaming
data, to test the algorithms in online operation.

The tests described in i) and ii) are validated using datasets
from [140,150,151]. The datasets have different
characteristics as: number of individuals and features, level
of intra-cluster overlap to observe how the allocation of
individuals is made in those cases, balanced, and

unbalanced classes, and finally, the number of clus see
detail in Table 5.5). Datasets with a large nu QN of data
are: Dim 1024, Unbalance and Postures (hi fmensional)

and their analysis is required to observe t@. luster quality
and to measure the machine time to rm the partitions.
2-dimensional datasets are used fo%galization purposes,
to easily observe the behavior o}&e different algorithms. In
all benchmarks, the orlgan“\)c mensionality has been
maintained to make omparison between the
algorithms. Also, in Ap X A a two-dimensional graphs
of the datasets are using the t-Distributed Stochastic
Neighbor Embeddi

Table 5.5. Dal@s used to test the clustering algorithms [107]

# # : #
Datas%Q Individuals | Features Overlapping Clusters

Dim @824 1024 1024 0% 16
ﬁment 2310 19 unknown 7
epta 212 3 0% 7

R15 600 2 0% 15
Aggregation 788 2 0% 7
Unbalance 6500 2 0% 8
sl 5000 2 9% 15

s2 5000 2 20% 15

s3 5000 2 41% 15

al 3000 2 22% 20
Postures 74975 15 Unknown 5
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5121 Comparison of LAMDA-RD with
other clustering algorithms

In the following experiments, the parameters of the
compared algorithms are tuned with the same care and
separately for each dataset, to make a fair comparison. The
tuning procedure of LAMDA-RD parameters is addressed in
[107], where a sensitivity analysis of the results is detailed.

This test is done to compare the quality of th@)rmed
clusters with respect to the results of origin @\/IDA and
other methods which are generally itera 'v% 0 not work
online, and require the number of ers as input
parameter which has been considere{& this work. These
algorithms will serve to make a (@»depth comparison in
terms of performance. The re of some conventional
algorithms such as: (K—mea@ (KM), K-medoids (KMD),
Fuzzy c-means (F DBSCAN (DBS)), and
Agglomerative hierarc tree (AHT) [4] are presented in
this work. We ha sented a more detailed analysis in
[107], showing sults of other algorithms as Spectral
clustering (S 3], Hierarchical density-based clustering
(HDBSCANNHDB”) [54] and Link-based cluster ensemble
framevm@mth consensus function (CON) [55].

Fi ?3 shows the methodology used for this experiment.
uld be noted that LAMDA works with streaming data

while the other algorithms require the complete dataset. This
test allows to evaluate the quality of the created clusters
considering benchmarks with historical data.

115



change the order
of the data
y

Data Stream

Original LAMDA
LAMDA-RD
Setting
parameters

KM, KMD, FCM,
AHT, DBS, SPC

Generated clusters

Compute

Statistic Summary
Average/std

>
<{“r>
Figure 5.3. Methodology used for the comparisc& AMDA-RD
with other approaches

As shown Figure 5.3, to obtain mor. iable results, the
experiment is repeated 20 times (#reps = 20), each time
performance metrics are compuiefl,*and from the obtained
results, the mean value () anq%?\dard deviation (o) of the
metrics are computed, to C@BI’ the repeatability and the
confidence interval of tl Qperiment.

Table 5.6. presenL@Q SC for each clustering algorithm,
where the best ge (highest value) in each benchmark
has been mar n bold text. The standard deviation shows
the variabilQ\o the results in the different tests.

The besh algorithms have SC values the closest to 1,
ideppitying dense and well-separated clusters. In all
b!ic marks, LAMDA-RD is better than original LAMDA, in
most cases significantly improving the quality of the created
partitions, for instance, see the results in Segment, or in the
cases of Unbalance, s1, s2, s3 and al, where SC goes from
negative values (bad clustering) to positive values, in some
cases better than conventional algorithms (SC close to 1).
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Table 5.6. SC for different clustering algorithms

LMD Lg'g‘ KM | KMD| FCM | AHT | DBS

_ 7 | 1.00 | 1.00 | .00 | 1.00 | 0.58 | .00 | 1.00
Dim1024 —>175.00 [ 0.00 [ 0.00] 0.00 | 0.03 | 0.00 | 0.00
Segment 2 0.25| 057 [ 0.49] 050 | 0.51 [ 0.42] 0.38
o | 0.00] 0.05[0.03]0.02]0.02]0.00] 0.00

Hepta v | 0.85| 0.88 | 0.77] 0.88 | 0.88 ] 0.88] 0.88
o | 0.03] 0.00 | 0.07 0.00 [ 0.00 | 0.00 [/x00

Ris |7 [0.08]0.90]0.80[090]090]o0. 88
o | 0.06| 0.13 | 0.06 | 0.00 o.oo‘%gp 0.00

Agareg v | 0.34| 057 [ 0.64] 0.64 | 0.62%8%62 | 0.61
" e ] 0.05]002]0.02][0.01 } 0.00 | 0.00
Unbalan, |2 -0-1 | 0-94 | 0.90] 0.89 ] OB | 081 0.94
| ¢ 0.08] 0.030.07 | 0.6¢¢0.07 | 0.00 | 0.00

o1 v | -02]085[081] M4 0.85]0.85] 0.83
o 1 0.03] 0.05 0.03,?.0.‘06 0.04 [ 0.00 [ 0.00

< v | -02] 072 | Q#&f 0.75 | 0.78 | 0.74 | 0.59
o | 0.03] 0.06,,0%4] 0.05[0.03]0.00] 0.00

3 v | -02 | 0.4640.63] 0.64 [ 0.65] 0.43[ -0.3
o [ 0.02] @] 0.02] 0.02 | 0.02 [ 0.00][ 0.00

al v | - N V65072 072]072][068] 054
- 0.05 | 0.02| 0.03 ] 0.03] 0.00 | 0.00

&
Q\
LAMDA—BIYb ains a performance comparable to the best
clusteri orithms in datasets as Dim1024, and Hepta.
Also igfhe best algorithm for Segment, Unbalance and s,

i&fr are datasets of balanced and unbalanced distribution,
with a maximum intra-cluster overlap of 9%. In the
benchmarks R15, Aggregation and s2, LAMDA-RD presents
results very close to the best value (KMD). In s3 and al, the
algorithm decreases its performance due to the dispersion
of the individuals (the overlap increases). Nevertheless,
based on SC, it is observed that LAMDA-RD, in s3 and al
datasets, presents better results with respect to DBS.
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The weakness of LAMDA-RD in datasets with high overlap
occurs since the number of clusters to be built is unknown.
It has the same problems as density techniques as DBS,
which decrease their performance since they are not based
on distance optimization criteria, like KM, FCM or AHT.

The o in all cases allows to notice that similar results are
obtained in each iteration. The worst case is given igRlS,

where o = 0.13 reaches 14% of the average value, gi4¥g an
idea of a correct behavior of the algorithm. N\results of
W B;,,4¢, TOr €ach clustering algorithm are pre d in Table
5.7, where the best average (lowest e) in each

benchmark has been marked in bold %
Table 5.7. WB;, 4o, fOr differen{%stering algorithms

Lvp | e | kiPkmp | Fom | aHT [DBS

. v | 014 | 0.14 $)Q1%2[ 0.14 | 2.24 | 0.14 | 0.14
Dim1024 =25 00 | 0,00%0.00 | 0.00 | 0.07 | 0.00 | 0.00
Segment 2321 L45B | 3.64] 3.49 | 345 7.09 | 5.05
- 1.23«3 23 [ 0.14 [ 0.08 | 0.07 [ 0.00 | 0.00

v | 272 176 [ 2.41] 176 [ 1.76 | 1.76 | 1.76

Hepta = 1845 | 0.12 | 0.39] 0.00 | 0.00 | 0.00 | 0.00
Ris LB Q275|143 [ 1.76] 1.42 | 1.43] 1.43] 1.47
shdg | 2.76 | 0.14 [ 0.17] 0.00 | 0.00 | 0.00 | 0.00

Agar AMv [ 386 ] 220 [215]211]215]2.20] 245
o | 031031 [0.06]0.01]0.05] 0.00[0.00

Q&%f;n 7 |1154| 1.03 [ 1.04] 104 110] 2.95] 1.08
o | 0.83 ] 0.07 [0.04] 0.04]0.06] 0.00 [ 0.00

1 v |3050] 1.77 [ 204 1.83]1.79] 178 1.78

S o | 1.59 | 0.17 | 0.22] 0.31 | 0.22 | 0.00 | 0.00
5 T |57.52| 2.44 | 242|237 | 2.19| 2.39 | 2.68

S o | 1.45 | 023 [0.25] 0.24 | 0.18 | 0.00 [ 0.00
3 7 | 91.8 | 558 [ 3.08[ 3.05 [ 2.92 | 4.15]| 7.76
o | 248 1 0.26 [0.14] 0.14 | 0.11 | 0.00 [ 0.00

a1 T | 552 | 290 | 2.78| 2.75 | 2.72| 2.89 | 2.43
o | 208|014 [0.11]0.15]0.13] 0.00 [ 0.00
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As in the previous metric, LAMDA-RD is the best for the
WB;,, 46, IN the datasets: dim 1024, Hepta and s1, where the
individuals have a percentage of overlap under( 9%), and in
the case where the clusters are unbalanced (Unbalance).

In the datasets Segment, R15 and Aggregation, LAMDA-RD
is very close to the best values, as explained before, in
cases where there is no overlap between groups. For,s2, s3
and al, the performance of the method decreaseﬁe to
the presence of individuals in overlapping ar e other
methods can build better models because know the
number of clusters to build; this is eviden y the results
obtained with the methods KM, KMD, @d and AHT whose
results are similar in the last three b arks. Small values

of g, again show that the repe ty in the experiments
performed at each iteration is uate.

Finally, we propose o %ay to determine the best
algorithms with only o @fletric, we propose to compute the
Performance Coeffi t “P." defined in Appendix C and
detailed in [107|<‘$hese values are shown in Table 5.8. The
best result been marked in bold text for each

benchma,rk{\

The reSdits presented in Table 5.8 show that LAMDA-RD is
th t algorithm for the following datasets: Dim 1024,
H;ta, Unbalance and s1, which implies a correctclustering
based on P.. In Segment, and R15, LAMDA-RD has values
very close to the best algorithm (KMD). The performance for
s2, s3and al isreduced in LAMDA-RD and DBSCAN, which
is reasonable because they are based on densities, in which,
if there are scattered individuals, then the algorithms cannot
make a correct assignment in the clusters. Also, it can be
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seen that our proposal makes an adequate clustering when
the groups have not overlapping between them.

Table 5.8. P, metric for different clustering algorithms

LMD "I';"DD' KM | KMD|FCM| AHT | DBS

. v | 0.14 | 0.14 | 0.14| 0.14 | 3.902 | 0.14 | 0.14

Dim1024 = 1,60 [ 0.00 | 0.00| 0,00 | 0.35 | 0.00 | 0.00

v | 127 | 8.01 | 7.43| 7.04 | 6.78 | 17.02 |/}8.48

Segment — e o 170.16 | 0.59 | 0.42 | 0.44 | 0.00¢D5.00

H 7 | 323 | 1.99 | 318 1.99 | 1.99 @9‘ 1.99

Pt 170,60 | 0.29 | 0.71] 0.00 | 0.00. 860 | 0.00

R1 T | 110 | 1.59 | 224|158 | 15347 1.60 | 1.68

5> 5 [ 320 017 | 0.40] 0.00 J.0®6 | 0.00 | 0.00

Aggreg v | 117 | 472 | 3.37| 3.28%2.47 | 356 | 4.04

[ o | 291 | 244 | 0.19 0%4 0.25 | 0.00 | 0.01

Unbalan. 2 343 | 1.10 1.1@}. 8| 143 3.66 | 1.17

"6 [ 3.26 | 0.06 | 0484/0.13 | 0.19 | 0.00 | 0.00

o1 T | -109 | 2.04 Js258 | 222 | 2.12 | 2.08 | 2.15

o | 10.4 | 0.30N&0.37 | 0.56 | 0.35 | 0.00 | 0.00

) v | 290 | IA0”| 3.29| 320 | 282 | 322 | 453

S o | 37.3.X073 | 0.52| 0.57 | 0.38 | 0.00 | 0.00

3 7 | -320)12.30 | 4.86 | 4.79 | 449 | 8.64 | -23.6

s o | #y%| 153 | 0.40] 0.37 | 0.32| 0.00 | 0.01

1 v {O> | 447 |389]384]378] 426 | 453

a @5 - [059[025[035[032] 000001
N\

L&@(ggnchmark s1 (9% of overlapping), LAMDA-RD is the
t algorithm, concluding that the performance of the
algorithm is not affected by individuals slightly overlapped
between clusters. Also, based on the metrics, we can note
that LAMDA-RD perform a proper clustering process for the
unbalanced datasets (unbalance). When the overlapping
percentage increases, e.g., in s2 (20% overlap), the
algorithm still makes a correct clustering; however, in the
case of al and s3 (22% and 40% of overlapping,
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respectively), based on the experiments, it is concluded that
density-based methods have problems assigning individuals
located in the overlap zone. KMD, FCM, and AHT have the
advantage of knowing the number of clusters a priori, which
makes it easier to assign those samples to the nearest
cluster, e.g., in s3 (P, = 4.48), while LAMDA-RD decreases
its performance (P, = 12.3), a value that shows that when
there is an overlap greater than 20% between clusgé the

proposal builds clusters with poor quality, Qc rrectly
assigning individuals to the most sirr1§) clusters.
Particularly, the proposal is better than D&Q}t e methods
with which a fairer comparison can be without setting
the desired number of partitions. \pg

Based on the P, the results a {Bnsistent with SC, and
WBipdexrr LAMDA-RD presen%%orks adequately if the
overlapping between vgﬁbi less than 20%. If the
overlapping increases, he iterative methods are better,
which is logical d@ to their individual assignment
methodology that a\@\/s minimizing distance functions at the
intra-cluster, é@ maximizing inter-cluster distances;
however, $ iterative methods increase the computation

time depending on the dimensions of the objects, and the
datas

i gﬁ/ the quality of the clusters related to the real classes
of each benchmark is evaluated with RI. The results are
computed with the best partitions obtained with each
algorithm. These values are shown in Table 5.9. The best
(highest values) has been marked in bold text.
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Table 5.9. RI metric for different clustering algorithms

LMD '-g'g' KM | KMD | FCM | AHT | DBS
Dim1024 | 1.00 | 1.00 | 1.00 | 1.00 | 058 | 1.00 | 1.00
Segment | 0.53 | 0.43 | 0.62 | 0.74 | 0.84 | 0.34 | 0.01
Hepta | 0.84 | 0.99 | 0.94 | 0.91 | 0.89 | 0.99 | 0.99
R15 0.13] 0.99 | 055 | 0.99 | 0.95 | 0.98 | 0.42
Aggreg. | 0.12 | 0.81 | 0.73 | 0.70 | 0.57 | 0.99 | 0.1

Unbalan. | 0.08 | 1.00 | 0.88 | 0.88 | 0.83 | 0.61

sl 0.10] 0.99 | 0.83 | 0.80 | 0.97 | 0.98 [Ca'¥6
s2 0.09 | 0.89 | 0.83 | 0.96 | 0.96 | 0.824/V0.73
s3 0.08] 052 | 0.80 | 0.84 | 0.83 | B¥’| 0.39
al 0.07 [ 083 | 0.86 | 0.93 | 0.90 95 | 0.78

The results of Table 5.9 show that h&%rs constructed by
LAMDA-RD have a high value \(\ inciding with the real
classes, taking into consider& that RI is an extrinsic
clustering validation me t

the clustering method aj
RD is better than L

at compares the output of
real results (groups). LAMDA-
in all benchmarks, and in some
datasets like Dim % , Hepta, R15, Unbalance and s1, the
results are as as the best algorithms, and in some
cases better than them (see R15, and sl). In the rest of
datasets has problems in Segment dataset, in which a
high er of descriptors is affecting the performance of
th sity-based methods (see the values of LAMDA-RD,
b& and HDB), so, an evaluation of the relevant descriptors
should be made, discarding those that do not adequately
characterize each group. Due to the distribution and different
densities of the clusters of Unbalance (see the distribution of
data in [150]), LAMDA-RD, DBS and HDB algorithms are the
best since they can clearly distinguish each group due to the
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separation that exists among them, without the existence of
overlap.

Table 5.10, shows the relative error between the result of the
best clustering algorithm based on the average value and
LAMDA-RD.

Table 5.10. Relative error between the highest R and LAMDA-

RD metrics ,«{?5'
Dataset Best LAMDA- Relative*)
Value RD Erropg%)
Dim1024 1.00 1.00 o
Segment 0.84 0.43 ?\%.81
Hepta 0.99 0099 AV 0
R15 0.99 0.99 \V 0
Aggreg. 0.99 0.81M 18.18
Unbalan. 1.00 ADBO” 0
sl 0.99 [ £N\®99 0
52 0.96 A ¥0.89 7.29
s3 0.8AA\Y 052 38.10
al \{(:)}tgg' 0.83 12.63

The results of T 5.10 show that LAMDA-RD presents the
largest errorsfb‘s gment (48.81%) and s3 (38.10%), these
errors d (?o the overlap presented by their respective
sampl ’éelative errors of less than 20% are evidenced for
al datasets, and in some cases the relative erroris 0%,

allows us to validate our algorithm in the clustering
context.

5.1.2.2 Performance comparison  of
LAMDA-RD and other online clustering
algorithms

To analyze and determine how LAMDA-RD improves the
behavior of LAMDA and other online clustering algorithms
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that work with data stream, the following test is performed.
Aditionally, it is presented the time consuming of each
proposal in a streaming data scenario. In this context, a
successful algorithm must consider the following restrictions
[152]:

e Individuals continually arrive;

e There is no control in the order in whi the

individuals are generated,; <{i‘)
e The size of a stream is (potentially) urﬂ@nded;
e Data objects are discarded after have been
processed. (2}
All these restrictions are consideraghin this experiment, in
which are tested the algorithm DA-RD, LAMDA-TP,
and ADDclustering, for online streams [149] (the results
of original LAMDA are nted in [107]). A maximum
exigency parameter is a = 1), because it is desired a

strict behavior for tlgsak;orithms in the assignment process.
The control par rs of LAMDA-RD (d,,, and D,) have
been heuristi set to obtain a number of clusters closer

to the regl sses in each dataset. The methodology used

for this ’e\@riment is presented in Figure 5.4.

$©
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parameters T Algorithms
: 1 n=n+1 |<—
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Summary

Average/Std H 2 *On-line operation E

Figure 5.4. Methodology used for th (&nparison of the different
online clusterigé rithms

The experiment is repeate times (#reps = 20), each
time performance metric computed. Finally, from the
obtained results, th age and standard deviation are

computed, to obs the repeatability in the creation of
clusters of each@iline algorithm.

The results f% metrics are shown in Table 5.11, and the
algorith the best average metric is marked in bold text.
Acco mﬁg to P, LAMDA-RD isthe best in all the cases, even
w h-dimensional datasets (see Postures), which shows

acceptable scalability of LAMDA-RD at the cost of
increasing the computational time, which is common in data
stream scenarios. It can be observed that this metric
increases directly proportional when the percentage of
overlap between clusters increases (see sl, s2, s3 and al),
which is expected because the clustering is more complex
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since different individuals can belong to two or more
Clusters.

LAMDA-RD has the highest computational cost, due to the
additional operations that are executed for the merging
stage. This time depends especially on the number of
individuals and the number of dimensions, e.g. Segment
(65.23s, 2310 individuals and 19 features), and Pastures
(600.8s, 74975 individuals and 15 features). Additiaé% , it

clustering. Evaluating P., LAMDA-RD is
Segment (LAMDA-RD: 65.23s and AIKZ&Iustering: 1.780s)
ADDclustering is faster, which sh that this algorithm
works better with several degSitptors, decreasing its
performance when the numbe&dividuals increases (see
Postures).

Table 5.11. Performanc Qrics of online clustering algorithms
N

AYSC [#Clus. | WBina | T(s) | PC

LMD- J&Y 0,57 | 7,00 | 456 | 652 | 8,01

RD 30 [ 0,05 | 1.00 | 023 | 519 | 0.6

segment, "%3 % 0,9 | 300 | 125 | 250 | 662
o LT e T

v il 3 3 ) 3y

Agci} APDC 170,03 | 0,00 | 068 | 033 | 155

\l‘(f' LMD- | v | 0,85 | 150 | 1,77 | 26,8 | 2,04
RD [o| 005 | 1,00 | 017 | 423 | 0,34

.1 |IMD- [ w047 | 150 | 417 | 384 | 941

TP [o| 008 | 1,00 | 044 | 047 | 3,09

% | 051 | 400 | 232 | 859 | 453

ADDC =507 1 0,00 | 0,02 | 0,00 | 001

IMD- | % | 0.72 | 150 | 244 | 3184 | 3.40

o |RD_[]006[ 100 [ 023 | 615 073

LMD- | % | 039 | 220 | 593 | 392 | 165

TP [ | 009 | 200 | 069 | 033 | 665
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v - 1,00 Inf 1,22 -
ADDC [———— 0.00 — = —
LMD- |7 | 046 | 30,00 | 558 | 3025 | 12,30
RD c | 004 [ 100 [ 026 [ 148 | 153
3 LMD- | w | 0,35 | 240 | 6,22 | 3,88 | 18,46
P o] 005 [ 200 [ 048 [ 0,09 | 3,99
v - 1,00 Inf 1,25 -
ADDC [———— 0.00 — 5 —
LMD- |[» | 0,65 | 20,0 | 290 | 5,98 47
RD o | 005 | 1,00 | 0,14 | 0,78 £A®59
al LMD- |w | 0,32 | 17,00 | 559 15()»"17,81
TP o | 005 | 1,00 | 044 a3 | 374
v | 053 | 11,00 | 379502698 | 7.16
ADDC 17500 | 0,00 | 0,008} 0,00 | 0.00
LMD- | %[ 0,03 | 6,00 [10%® | 600 | 497
RD o | 000 | 1,00 Js 19 524 | 6,87
Postures | WMP- | @] 0.05 25,0{[~¥288 | 110, | 644
TP o | 000 | 088> 269 | 365 | 524
ADDC 7| 0.68 200 | 6547 | 766 | 9672
o | 0085000 | 1025 [ 10,98 | 35,24
,&V
An illustration of btained clusters with the different
algorithms in s@esented in Figure 5.5.

. : 0 ; P— -
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
descriptor 1 descriptor 1

(@) (b)
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©) o 2
Figure 5.5. Tests performed with s1 dataset; (a) @l partition,
clusters generated by (b) LAMDA-RD (15 clu Mc) LAMDA-
TP (15 clusters), and (d) ADDclustering (4 ers), see the
detailed statistics in Ta

The parameters of LAMDA-RD dc?and D,) hlave been
calibrated to obtain the desired er of clusters. On the
5

other hand, LAMDA-TP creat clusters of poor quality
because itincorrectly assi @in ividuals in different clusters
(bad quality clusters)(gé\ally, ADDClustering builds 4
clusters, and accor& 0 the results of Table 5.10 (for s1),
it can be noted thatt\ quality of the clusters is not as good
as that obtainq% LAMDA-RD, where all quality metrics are
the best’, Qg P. = 2.04. The method that follows is
ADDCIul , with P, = 4.532 (almost double), this is, the
grou;éfpmed have better inter-cluster (the individuals inthe
S group are very similar to each other) and intra-cluster
characteristics.

5.2 Tests of LAMDA as controller

In order to validate the LAMDA controller in the different
proposals, in this subsection different case studies are
addressed, based on the papers developed throughout this
research, such as [124,136,138,153,154], in which its
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behavior has been observed in various non-linear systems
whose characteristics may be of interest in different
applications, which shows the versatility of LAMDA-based
controllers.

The results of Rule-based LAMDA are not shown in detail in
this section because this work focuses on the comparison of
LSMC, ZLSMC and Adaptive LAMDA proposals. ese
methods use the Rule-based LAMDA preseoé in

subsection 4.1 as a basis for the design and imp tation.
For a more in-depth analysis of its applicatiop\he field of
control, the reader is recommended review our

papers[124,154]. \(2}
52.1 LSMC experiments (\‘Z*

The proposal is validated in I\/Q(Z/TSO continuous nonlinear
systems: 1) Temperature oPof a continuous stirred tank
reactor (CSTR) under ed disturbances and reference
changes, and 2) R on of a mixing tank with variable
parameters (vari dynamics). The tests are compared
with PID coni@s (or their variants), Rule-based LAMDA
[124,154] MC presented in [127]. Additionally, the
scallng calibration of the LSMC is performed using two
meth Heurlstlc calibration and Offline calibration using
éﬁs mentioned in the fifth objective of this work).

The purpose of making the comparison of both scaling gains
calibration methods is to analyze if there is a considerable
improvement in the performance of the controller in the
tested processes.

129



5.2.1.1 Case Study 1

The system studied is a continuous stirred tank reactor
(CSTR) presented in Figure 5.6, where the exothermic
reaction A — Bis carried out. To remove the heat of reaction,
the reactor is surrounded by a jacket through which a cooling
liquid flows. The temperature controller has been calibrated
to operate in a range of 80 to 100[°C].

Reference N\

Calt) Product

@) T
&%5 .6. Studied process (CSTR)
For the sy analysis, the following considerations are
acceptecf@ 7]

Q}K%ensmes and heat capacities of the reactants and
products are equal and constant.

e The heat losses from the jacket to the surroundings
are negligible.

e The heat of reaction is constant.
e The liquid volume in the tank is constant.

e The jacket and the reactor are well mixed.
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The mathematical equations that describe the dynamic
behavior of the system are:

e Mole balance on reactant A

dC(';t(t) F(t)(Cm(t) CA(0) = kG2 (5.1)

e Energy balance on reactor contents

dT(t) F(t)
T,(t) — T(t kCZt— N\
9 —(T;(®) = T(@®) —kC* (D) C, &Q’;\

‘ch (T@?‘— T () (52)

e Energy balance on the jack?é‘\

dTc(t)  UA
dt VC CCpC (T(t) TC (té

e Reaction rate coQéét’ent

\0 k = kye RTFZTH (5.4)
e Temp @Q‘?‘e transmitter

TO(t) T(t) —80
TT[ 20

(Tc ) - Tu(®) (5.3)

~TO (t)] (5.5)

Q)«c%emperature transmitter
3 Fo(t) = Fe,  a™™® (5.6)

where C,(t): concentration of the reactant in the reactor
[kgmol/m3], C;(t): concentration of the reactant in the feed
[kgmol/m3], T(t): temperature in the reactor [°C], T;(t):
temperature of the feed [°C], T, (t): temperature of the jacket
[°C], T,;(t): coolant inlet temperature [°C], TO(t): transmitter
output signal normalized from 0 a 1, [fraction TO], F(t):
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process feed rate [m3/s], V: reactor volume [m3], k: reaction
rate coefficient [m3/kgmol — s], AHz: heat of reaction,
assumed constant [J/kgmol], p: density of the reactor
contents [kgmol/m3], C,: heat capacity of the reactants and
products [J/kgmol —°C], U: overall heat-transfer coefficient
[J/s —m? —°C], A: heat transfer area [m?], V,: the jacket
volume [m?], p: density of the coolant [kg/m?], C,,.: specific
heat of the coolant [J/kg — °C], F.(t): coolant rate [r&in],
Tr. time constant of the temperature sensor@ Feas
maximum flow through the control [m3/ 7 a. valve
rangeability parameter, k,: Arrhenius fre cy parameter
[m3/s — kgmol], E: activation en of the reaction
[J/kgmol], R: ideal gas law const e%{gmol K], m(t):
the fraction of controller output, f to 1 [p.u]. Table 5.11
shows the parameters in dy-state at the desired
operating point of the CS

Table 5.12. \It@y-state values of the CSTR

Var. Val L{e\\" Var. Value
C,®) | 1.1 kgmeNm3 Ve 1.82 m3
Cai(®) 2. hol/m3 F(t) 0.45 m3 /min
T 2\ 88°C Femax 1.2m3/min
Ti Y  66°C Cpc 4184 J/kg —°C
T, Cn® 27°C a 50
A 88°C Tr 0.33 min
g 4 —9.6e” ] [kgmol ko 0.07 m3/kgmol —s
Cp 1.81e> J /kgmol E 1.182e7 J /kgmol
— OC
U 3550 /s —m? —°C T, 50.5°C
oc 1000 kg/m?3 m 0.254 fraction CO
A 5.4m? vV 7.08 m?3
p 19.2 kgmol/m3 R 8314 J/kgmol —
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The model can be approximated to a First-Order Plus Dead
Time (FOPDT) as presented in [127] with the form of :

X(s)  Ke%*
UGs) (ts+1)

(5.7)

where X(s) is the Laplace transform of the controlled
variable (the transmitter output), and U(s) is the Laplace

transform of the manipulated variable (the controll;:&ut),

K isthe process gain, 7 is the process time cons and t,
is the process dead time. &Q)
In [127], the parameter identification gi the following

values: K =1.6,7 = 13 min, t, = 3.0 @and for the design
of the controller, the dead time ¢, ?;n deled using a first-
order Taylor series approximatiopga :

géeQ ! (5.8)

Ttes+ 1
Substituting (5.8) in ({:&t is obtained:
X(s) - A{@ _ K 59
Ucs) ~ (Tygé)(tos+ 1) Ttes?+ (T +ty)s+1 '
Solving (,S.Qﬂ'n the time domain:
é:,\ Tt + (T +t)x+x—Ku=0 (5.10)
@stem represented in state-space, where x; = x, is:
X; =X,
X, = —sz - ix1 + ﬁu (5.11)

Tt, Tt, Tt,

Sincethis is a second-order differential equation, n = 2, from
(4.9), s(t) becomes:
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2

s(t) = (%wl) fe(t) dt

d? d
— _ _ 2
<dt+2/1dt+/1 >fe(t)dt

= é(t) + 2e(t) + A f e(t) dt (5.12)
The derivative of (5.12) becomes: {i;b.
$(t) = é(t) + 22e(t) + 12e(t) = OQ'::\\ (5.13)
For n = 2in (4.18): 2
e(t) = x4, (t) — x?gp (5.14)
A

Replacing (5.11) and (5.14) in (5.13),

"\
S(t) = xdz(t) + (T al tO) Xy + 1&_ ﬁu + Zﬂé(t)

Tt, T Tt
é‘b +22e()=0 (5.15)

Because K >0, theﬁ:)%> 0, so, based on (4.21), it is

Tto
concluded that 6\9), t) > 0. Thus, the rule tables to be
used inthis ¢ tudy are presented in Tables 4.1 and 4.2.

Figures 5.@1d 5.8 show the implemented rules to obtain
continuu@and discontinuous control actions.

~ Cyi72=-05 Csy4=05
g Ciip=-1 Csip3=0 Csips=1
!

I I I I
-1.5 -1 0.5 0 0.5 1 15

5(t)

Figure 5.7. Classes and rules for u, based on $(t) for the CSTR
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15 [ oA eses ]|
1t ' Cio: 710=0 Coorpo=1 | .
Csips=0 Cis 715= 0.5 Cosiyss=1
05+ ! Coi7o=0 Cwps=1 ]
Capa=0 Culyu=05 Coslya=1
S o , Com=05 | Cuipe=05
@ Caips=-1 Ci3iy13=0 Cosl y2s= 1
sl | Crpp=-1 Ci7 yr=0 i
) Caipp=-1 Cup: j12=-05 Caz: y22= 0
Ak i Co:pe=-1 Cie:p1e=0 A~
Ciip=-1 Cust yu=-05 Cai! }’21:60;&‘
i

15 1 | I s

-1.5 -1 -0.5 0 0.5 1 15
0 Q‘}

Figure 5.8. Classes and rules for u,; based on @end s(t)for the

CSTR
Four different approaches are tested_to\tontrol the process,
a conventional PID, a SMC contr roposed in [127], the

LAMDA-PID presented in [1 ﬁ d the LSMC controller.
From [155], a Pl is recom ed when t, < t/4; for this
reason it is implemented the test instead of a PID. The
controller paramete e been tuned considering the
method of Dahlin {%%esis, obtaining K. =1.35 and 7, =
13 min. The S@arameters have been tuned considering
the method r‘&o ed in [127], these are: 4, = 0.0421, A, =
0.410, K .96, 6 = 0.76. The LAMDA-PID controller has
the p ters k, = 0.028, k; = 3.5, k; = 0.25, and for the
L yexperimentally: A = 0.144, k; = 2.5x 1074, k, = 1.2,

1 andk,; =3. These values have been obtained
empirically to decrease the ISE of the system.

The PSO optimization has the following parametrization:
#particles = 500, stalltime limit = 100, #variables =5,
constraint 0 <m(t) <1. As result, the optimized
parameters are: A = 0.121, k; = 2.389 x 107%, k, = 1.284,
k. =1 and k; = 4.985. The results of the controller with
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heuristic calibration are labeled (LSMC), and the results with
the optimized calibration are labeled (LSMC-op).

o Reference Change Test

Figure 5.9 shows the temperature output T(t). At
50, 400, 650, and 870 min step changes are applied to the
reference, to analyze the tracking carried out by the
controllers. :2}.

The results show that LSMC presents a smoo h@’ksponse
than the other three methods in terms of co action and

system output. Additionally, it is observeé at when the
greater magnitude reference chang urs, LSMC is the
one that presents the minimum over e&t. The control action
is similar to SMC and LAMDA aifi, féss abrupt than PI. An
important point to note is how works much better than
LAMDA-PID, with a less qgjll ory response that quickly
reaches the reference. e 5.10 summarizes the values
of overshoot and Y0 time obtained in the reference
change at time 87, @in, and the ISE of the entire simulation
to compare th;b@ies obtained by each controller.

105 N

- % .Referfnce — LAMDA-PID
—LsmMC
§‘ 100 MC LSMC-op

time [min]

(@)
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—FPI

—sMc
——LAMDA-PID
—LsMC

o J —LSMC-Ep
0 200 400 600 800 1000 1200
time [min] &
®) 2
Figure 5.9. (a) Comparative outlet temperaturéauhe CSTR, (b)
applied control actions

Controller Output [Fraction CO]

The results presented in the bars of P&&re 5.10 show that
the controller with the best perfor is LSMC (ISE gyc =
5.709), with respect to the {é? MC and LAMDA-PID
controllers. This index is consistent with the values of settling
time (0.596h) and oversh&z.SS%), which shows that the

LSMC response is s r and reaches the referencein a
shorter time than t er control schemes.
) P — 4,93 6,446
,\6 C E——5 6,808
Q;{Q%DA-PID — m 7,513
LSMC  [— 2,53 ’

5,35

LSMC-op m 2,58

ISE ® Overshoot [%] ™ Settling time [h]

Figure 5.10. Comparative values of performance indexes of the
controllers applied to the mixing tank
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e Robustness Test

This test presents the response of the controllers when two
disturbances are applied to the system. The first disturbance
is applied at 100 min, reducing by 10% the temperature of
the feed T;(t) as shown in Figure 5.11. At this point, itis seen
that if T;(t) decreases, then the controller output must be
increased to close the AC valve, such that less refrigerant
enters the jacket, and the temperature increases_ﬁ the
desired reference. The second disturbance i %Iied at
500 minincreasing at 10% the concentrati e reactant
in the feed. At this point, it is seen that if C{;ycreases, then
the temperature in the reactor incrs?s; therefore, it is
required that the control action decr‘@s s to open the valve
to allow more refrigerant in the jacket to reach the desired
temperature. The PIl, SMC, LA -PID, and LSMC present
the following performanc @exes ISEp; = 0.402, ISEgy - =
1.8, ISE, sypa = 0.448,(%1 ISE; gic = 0.38, respectively.
Analyzing these re , it can be seen that the index of
LSMC is the bes litle lower than Pl and LAMDA-PID,
and much be an SMC. The control action of the LSMC
is less am than the PI and LAMDA-PID with few

oscillati F@ ich is a great advantage since there is no
cons@ble effort required from the control valve,
%&I ing that the proposed controller shows an
outstanding behavior in terms of disturbance rejection.
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Figure ’5 (@) Comparative outlet temperature of the CSTR

s r disturbances, (b) applied control actions

@2\ d
72.1.2 Case Study 2
Qf

‘n:}; system studied consists of a mixing of two fluids inside
a tank where the volume of the tank varies freely without
overflowing (see Figure 5.12). The system has a hot water
stream W, (t) that mixes with a cold water stream W, (t)
manipulated through a valve (actuator). The resulting
mixture gives an output water stream W, (t), which must be
at the desired temperature. The temperature transmitter is
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installed at a distance of 125 [ft] from the tank outlet, and
has been calibrated to operate in a range of 100 to 200 [°F].
The distance between the tank outlet and the location of the
temperature transmitter generates a time delay in the
measurement. For the system analysis, the following
considerations are accepted:

Hot Flow D Cold F
Wi (t)
Ta(t)

hs

The liquid volume in the tank varies
overflowing.

'\
The pipe and the tank are well insula;&g)

The tank contents are well mixed.
Q&lout

The main disturbance of the s is the hot
stream W, (t).

%\(b Refe{ence

»
4

Beatc)

Manual

\:a%"’e Ws(t) T

. ’00 « 125 [ft] >

N
«C:; Figure 5.12. Studied process (Mixing Tank)

anathematical equations that describe the dynamic
behavior of the system are:

Energy balance in the mixing tank

Wy (®)Cp, T, (t) + W, (£)Cp, T, (t) — W5 (£)Cps T, (t)

d(h;@©T;®)
Vs dt

= A,C (5.16)
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e Mass balance in the mixing tank

dhs(t)

WO+ Wo(©) =W, (0) = A, —

(5.17)
. Manual valve

W, (£) = 11.8685Cy /T3 () (5.18)

e Pipe delay (between the location of temefggure
sensor) and the mixing tank

T,(t) = T (O (t — ¢, (D) &Q} (5.19)
e Time delay (dead time) é

to(t) = Z;%’é (5.20)
a

e Temperature transmith

dTO(t) 14726 - 100
@i{&loo —TO(t)] (5.21)

e Control vai,\\@ osition

’% o LCRAAC (5:22)

RN
0«%&/6 equation

QQ’ W, (t) = SOOCVLV ©) [G,AP, (523)

where W, (t): mass flow of hot stream [lb/min], W, (t): mass
flow of cold stream [lb/min], W, (t): mass flow of the output
stream [lb/min], C,: liquid heat capacity at constant
pressure, [Btu/lb — °F], C,: liquid heat capacity at constant
volume [Btu/lb — °F], h3: tank content level [ft], A: mixing
tank cross-section [ft2], T;(t): hot flow temperature [°F],

141



T, (¢t): cold flow temperature [°F], T5(¢): liquid temperature in
the mixing tank [°F], T, (t): temperature T;(t) considering the
delay t, [°F], t,: dead time [min], ¢: density of the mixing
tank contents [Ib/ft], Cy,: valve flow coefficient [gpm/
psil/2], TO(t): transmitter output signal normalized from 0 a
1 [p.u], V,(¢): valve position, from O (closed valve) to 1 (open
valve), m(t): the fraction of controller output, fro;&to 1

[p.ul, G;: specific gravity, AP,: pressure drop a the
valve [psi], 74 time constant of the tempe sensor
[min], Ty, time constant of the control val in], A: pipe

cross-section [ft?], L: pipe length [ft].

Table 5.13 shows the parameters in@teady—state at the
desired operating point of the mixidg“ank.

Table 5.13. Steady-state QJes of the mixing tank

Variable Value N | Variable Value
w; 250 Ib/mdw’ hs 4.26509 ft
W, 191.1%Mh¥min Cyrs 18 gpm/ft1/2
Wy 443 421h/min CyL gpm /psit/?
Cp, 08¥Ptu/lb — °F TO 0.5p.u.
Cp, “{D0Btu/lb —°F v, 0.478
Cvg 4 0.9 Btu/lb —°F AB, 16 psi
Cp3 2| 0.9Btu/lb —°F m 0.478 p.u.
®0° 250 °F Gr 1

\OP 50 °F Tr 0.5 min
Ty 150 °F Ty, 0.4 min

p 62.41b/ft3 A 0.2006 ftZ
Ay 3.51692 ft2 L 125 ft

From [127], the model can be approximated to a FOPDT as
presented in (5.7). In order to observe the behavior of the
parameters K, t and t,, the procedure presented in [156]
has been followed, in which itis proposed to vary the signal
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m(t) applied to the valve in successive step changes, from
0.1to 0.9. Figure 5.13 shows how these parameters change
as a function of the input signal m(t), it is varying ascending
(black) and descending (red).

-0.5

,1 2

~[min]

A

Gain K [fraccion TO/fraccion CO]

o 0.2 04 0.6 0.8 1
Q m(t) [fraccion COJ

4
Figure ’S@ K, 1, and t, variations as m(t) function for the mixing
tank
en in Figure 5.13, the parameters change over the
entire range of action of m(t), increasing the non-linearity of
the system, which is complex to model, so, itis considered
a highly nonlinear model due to the time delay and the

variation of the parameters, an ideal case study to test the
LSMC proposal.
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For the design of the controller, it is used the procedure from
(5.7)-(5.15) presented in the case study 1 (CSTR), obtaining
a second-order system.

Figure 5.13 has shown that the gain of the process is
negative K < 0 for the entire variation range of m(t), then

X< 0, so, based on (4.21), it is concluded that b(X(¢t),t) <

Tlo

0. Thus, the rule tables to be used in this case s are
presented in Tables 4.1 and 4.3. Figures 5.14 an show
the implemented rules to obtain the discq@ous and
continuous control actions for this control sy§tem.

15
" __, LAMDA classes ‘
L | Ciol70=0 Czo-s‘ o=l T ]
Csips=0 Cis: “/15? Cosl ys=-1

05l I Coi70=0 (é, i pe=l |
Ciin=0 C 05 Cosl y2s=-1
Coi%g=05_ N  Ciiye=-05

s(t)

0r x x
Csips=1 il 13- y13=0 Casl y23=-1
78 7 Ciriy7=0
05 Cuyp=1 {bv C12: 712=0.5 Ca2: y22= 0
4L L =1 L 0163}’1620 L |
Ciiy= 1&0 Cuiyn=05 Colyn=0
15 \Q 1 1 1 |
-15 p -05 0 05 1 15
{b 8(t)
Figure 5, lasses and rules for discontinuous control action uy

QC:)\ based on $(t) and s(t) for the mixing tank

QQ;

°
= Cyiy,=05 Csiy4=-05
g Ciuin=1 Csip3=0 Cs:ps=-1
=z
L J
A5 - 05 0 05 1 15

§(t)

Figure 5.15. Classes and rules for continuous control action u,
based on $(t) for the mixing tank
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For this experiment, the controllers tested in the case study
1 are evaluated again. A PID, a conventional SMC, LAMDA-
PID, and the LSMC controller. From [56] a PID is
recommended when t, > 7/4 as shown in Figure 5.13. The
controller parameters have been tuned considering the
method of Dahlin synthesis, obtaining K, = —0.17, t; = 0.1
and 7, = 1.7. The SMC controller parameters have been
tuned considering the method proposed in [127], th re:
A, = 0.60, A, = 1.55, K, = 0.25, § = 0.71. The LA{\%A-PID
controller has the parameters k, = 0.25, k; = G\ekd = 25X
10~> and for the LSMC, experimentally, it een set 1 =

1, k;, =25%107°, k, =025, k. =5 7w = 0.55. These
values have been obtained empiricgllyN0 decrease the ISE
of the system. {

The PSO parameterization set to: #particles = 500,
stalltime limit = 100, @'iables =5, constraint 0 <
m(t) < 1. As result, t timized values are: 1 = 0.814,

k, = 2.34 x 1075, kéQ).ZBAL, k. = 4.625 and k, = 0.785.

Figure 5.16a sh% the change in the hot water stream W,

from 250 [lb/dn] to 125 [lb/min]. The variation of this

paramet onsidered as a disturbance that changes the

dynamigs ™ of the process. As an example, Figure 5.16b

S c¢\ ow the parameter t, is affected by the changes of
or the system in open loop.

25

0
200_L__________1____________1
150

I I |
0 100 200 300 400 500 600
time [min]

(@)

W, [Ib/min]
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Figure 5.16. (a) Change of W, (b) change of dead time t,

The results of the application of the controllers PIQ;%MC,
LAMDA-PID, and LSMC controlling the studied g tank

shown in

Figure 5.17, in which the system outlet te
applied control actions are presented.\(b

s

- Sence — LAMDA-PID

—LSMC
gsmo ——LSMC-op

Temperature T4 [°F]

i3

n COJ

éf‘ét{

o
w
@

>

El ;

s | |
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5 —PI —LsMmC i

S 025 |[—smc ——LSMC-op LV

£ —LAMDA-PID \“ﬂ'

3 02 | | | I }
100 200 300 400 500 600

time [min] (b)
Figure 5.17. (a) Comparative outlet temperature of the mixing
tank, (b) applied control actions
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As seen in Figure 5.17a, the LSMC controller regulates the
output temperature effectively at 150 [° F], with a small
overshoot and in a short time, e.g., see the small overshoot
(1.87%) when W, decreases to 125 [lb/min], while the other
proposals become oscillatory, unstable, or do not reach the
reference.

The LAMDA-PID approach can regulate the pgocess

adequately with a moderate presence of oscillatiafis™ The
PID controller can regulate the system in the di ance at
10 [min]; however, it oscillates as W, de es. In the
disturbance that occurs at 450 [min] (W, [lb/min)]), it
is observed that the controller is na&@le to control the
system, becoming unstable. (&'

In the case of SMC, the proce tput is regulated during
the first three changes of W, & observed that when W, =
150 [lb/min], then the r, nse of this controller is very
slow; however, it r es the reference. When W, =
125 [lb/min], the is observed that the controller
considerably d ases its performance and degrades
without reachi@ e reference during the simulation time.

The zoorg"W» Figure 5.17 shows in detail the behavior of the
syste tput and control actions, where it is shown that
I;&I@ reaches the reference quickly and with a smoother
control action than the other proposals.

The bars of Figure 5.18 summarizes the values of overshoot
and settling time obtained inthe disturbance attime 250 min
(where all the controllers are stable) and the ISE of the entire
simulation for the comparison.
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Figure 5.18. Comparative values of p?g}(nbance indexes of the
controllers applied to thg ixing tank

Figure 5.18 shows that thﬁ ontroller with the best
performance is LSMC (0. (3%1 h respect to the PID, SMC
and LAMDA-PID contro»% is index is consistent with the
values of settling ti 0.251h) and overshoot (0.66%).
Considering that r ISEimplies a better performance of
the controller ?ﬁuse the error converges to zero faster, it
can be note t the performance of the LSMC proposal is
the best, out the need for a recalibration of the controller,

a pro that is required for PID and SMC, to avoid the
d ation of their performances.

5.2.1.2.1 Sensitivity Analysis

Considering that the mixing tank case study is the most
complex to control due to the variability of the model
parameters which increases its nonlinearity, in this
subsection, the sensitivity analysis of the LSMC proposal is
presented, in order to observe how the number of classes
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affect the performance of the controller. For general
purposes, 5 classes (¢ = 5) for s(t) and 5 classes for $(t)
have been established, as detailed in Tables 4.1, 4.2, and
4.3. However, in this sub-section, the sensitivity of the
controller is analyzed for a different number of classes. This
experiment shows a comparison when three and seven
classes are set in each variable, as follows:

e Three classes (c = 3) for s(t) and three for $(t {é@ned
as N: Negative, ZE: zero, and P: Positive. Asybictailed in
the procedure of section 3, the classes

output are standardized between [-1, Isis N =-1,
ZE=0,and P=1. \@

e Seven classes (c = 7) for s(t) even for s(t), defined
as NB: Negative Big, Negative Medium, NS:

Negative Small, ZE: zeroX PS: Positive Small, PM:
Positive Medium, a@ B: Positive Big. Also, the
corresponding va| are standardized between [-1,1];
this is: NB = — =—0.66,NS = —0.33,ZE =0,PS =
0.33,PM = OQ and PB = 1.

In order to ;% a fair comparison, the input and output

$ .
constan the controller have been set at the previously
calib values for 5 classes in each variable, as

@1 ed in subsection 5.2.1.2. These areA =1, k; = 2.5 X
10%°, k, = 0.25, k., =5 and k; = 0.55.

The simulation of the mixing tank with controllers that handle
different class numbers is shown in Figure 5.19. The graph
presents the system output (showing the ISE) and the
control actions obtained in each case.
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Figure 5.19. C@ers with different number of classes (a) outlet
te e@mre of the process (b) applied control actions

shows that the responses of the controllers with
classes in s(t) and s(t) present greater overshoot,
erefore, a more abrupt response with respect to the
controller with 5 classes. The ISE for the controller with 3
classes is reduced by around 0.36% concerning the
controller with 5 classes, which has a smoother response,
being this its great advantage. The controller's response with
7 classes is more oscillatory; therefore, its ISE increases by
around 3.9%, concerning the controller with 5 classes.
Based on the results presented, it can be determined that
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the controller's sensitivity varies minimally by changing the
number of classes, without observing the degradation of the
controller, or considerable changes in its behavior. The
controller's best performance with 5 classes is because the
input and output constants were calibrated with this number
of classes. Itis considered that better performance could be
obtained in the case of 7 classes, by properly calibrating
their centers and constants, which is a more d@plex
process due to the existence of a greater %%Ber of
variables, which would imply more time in tlﬂ@esign and
calibration stages. <

5.2.1.3 Comparative Analy\i% of LSMC and
ZLSMC (&'

In this subsection, the two ous case studies are
evaluated with the LSMC ane& ZLSMC controllers under
heuristic calibration in e ase, since the improvements
with PSO consume @ machine time and as has been
observed, they h not represented a considerable
improvement in experiments.

The LSMC a@' LSMC controllers have been designed
under th ocedure described in subsections 4.2 and 4.4

respegiiMely and have been set with the same scaling gains
t in afair comparison among them.

5.2.1.3.1 CSTR Process

In this process the parameters of LSMC and ZLSMC,
empirically have been set to the following values: A =
0.144,k1 =25x107%,k2 = 1.2k, =1 and k,; = 3.
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Figure 5.20 shows the temperature output T(t) when step
changes are applied to the reference to observe the
response of the two controllers.
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Figure 5.20. (a) Comparative outl&@mperature of the
CSTR, (b) applied control acti@f LSMC and ZLSMC

(
Figure 5.21 shows the m%rature output T(t) when
disturbances are applied. first disturbance is applied at
100 min, reducing b the temperature of the feed Ti(t)
and the second dis&nce is applied at 500 min increasing
at 10% the con ation of the reactant in the feed.
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0.45

&
0 200 400 600 800 1000 1200 0 200 4%0 \ 800 1000 1200

- - ‘Reference
——LSMC

mém M
~
1
Controller Output [Fraction CO]
S o
(5, ES

(5}
F g6 —2ZLSMC 0.3
85 0.25
0 200 400 600 800 0 200 400 600 800
time [min] time [min]
@ (b)

Figure 5.21. a) Comparative outlet temperature of the CSTR
under disturbances, (b) applied control actions of LSMC and
ZLSMC
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5.2.1.3.2 Mixing Tank Process

In this process the parameters of LSMC and ZLSMC,
empirically have been set to the following values:: 1 =1,
k, =2.5%x107°, k,=0.25, k.=5 andk, =0.55. Figure
5.22 shows the response of the system when the changes
in the hot water stream W, presented in Figure 5.16 are
applied.

o
o
i3

o
S
(4]
=
0(')

o
~

- - ‘Reference
—LSMC
——ZLSMC

Temperature T4 [°F]

ntroller Output [Fraction CO]
S
6]

200 400 600
time [min]

200 400 600
time [min]

@) (b)
Figure 5.22. a) Compa{& outlet temperature of the mixing
it

tank, (b) applie \{é)] ol actions of LSMC and ZLSMC

Table 5.14 pres he ISE values and the percentage of
improvement #WK respect to the best value. The results
show that @MC is always better than LSMC. In the case
of the’\®STR process at reference changes, the
impr ent is minimal (0.07%), however the performance
%QESMC improves considerably (63.3%) when the
disturbances are applied to the system, which shows that the
Z-numbers theory in this process produces a less impulsive
response, reaching the reference more quickly due to the
fact that in the design stage the term "U" of reliability is
considered when errors are large. In the other hand, for the
mixing tank, ZLSMC is better than LSMC in a lower
percentage (3.10%), however the strong point to highlight in

O&.

Q

153



this case study is in the disturbance at 450 min, since as
observed in the Figure 5.22, the control action of ZLSMC is
smoother than the LSMC, this causes the overshoot to be
minimal and without oscillation, which is a considerable
improvement in terms of power consumption.

Table 5.14. Comparative ISE values among LSMC and ZLSMC

Process Controller ISE A
CSTR (Reference LSMC 5709 |, K4
change) ZLSMC 5.705 L4
CSTR (applied LSMC 0.3800§Q§ 29
disturbance) ZLSMC O.ZQZQ;‘ 70
Mixing LSMC 0.6836 | 3.10%
Tank ZLSMC Qg437 |

>
5.2.2 Adaptive LAMDA égp\eriments

To validate the propose ntroller, are addressed three
case studies, each wi fferent interesting properties,
these are: the temp e control of the mixing tank, the
regulation problem,§en HVAC and the tracking trajectory of
a mobile robo &he experiments, it is demonstrated that
the control strédegy is experimentally stable and can be
applied, i@tems with different dynamics. The results of
these riments are analyzed and compared with other
f (s'ntelligent controllers that do not require the exact
hlﬁ of the plant to be designed, such as Fuzzy-PI (rule-
based) and the LAMDA-PI (class-based [124],[154]). These
two methods are static (non-adaptive) and are designed and
calibrated based on the designer's expertise, which is
generally complex and time-consuming. The
aforementioned process is not required by the adaptive
method, which is the main advantage, especially when the
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system has unknown or variable dynamics. Additionally, the
comparison is made with the online inverse learning control
with ANFIS [77]. Comparative analysis allows identifying the
advantages of the proposed method in the different systems.
In the case of the adaptive schemes of LAMDA and ANFIS,
the procedure for the validation is shown in Figure 5.23,
which summarizes the training and application stages based
on the schemes of Figures 4.6 and 4.7. The black d@shed
lines represent the learning and controller c ration
parameters and the definition of the inputs. ]@eolid lines
e tests.

%nmg rate “n”

Set the values for mentum “g” L
the learning: rgetting factor “1”

umber of classes “m”

QJ

Define the dest r tﬁe Train the LAMDA

,,,,,, LAMDA ™ idetifier with inputy

il

% : output data pairs|

[x(k+1), % u(k- 1) u(k ] |
;,,,{\ ,,,,,,,,,,,,,,,,,,,J,,

Define the descriptors for the LAMDA

controller
X=[X1, ... X... %n] "=
»\(} D (1), X 1)I (D). u(kep)] T

o m

Update the

|
|
|
|
|
|
|
|
|
Train online the _|" parameters of the !
|

LAMDA identifier LAMDA controller |
|

|

|

|

|

|

|

|

|

Compute the
Controller Output

Application Stage with
online Adaptive LAMDA

Figure 5.23. Implementation scheme of the online learning
adaptive controllers
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5.2.2.1 Case Study 1

HVAC systems are complex structures consisting of chillers,
heat pumps, heating/cooling coils, boilers, air handling,
thermal storage and liquid/air distribution units. It is a MIMO
(Multiple-Input Multiple-Output) system with many variables
whose modeling and dynamic study is complex due to its
nonlinear characteristics [157]. Neuro-fuzzy syste are
widely used in complex processes for modeling anctB trol,
however, its application in the HVAC systems | ’} limited
[8]. The adaptive approach is simulated in th C system
presented by Arguello-Serrano and Velez-Reyes [158]. The
main control objective in this simulatign is to solve a
regulation problem, analyzing and jalidating the proposed
controller to abrupt disturbancgd\th the thermal space
variables (Zone 3 in Figure 5$\these are: Temperature

(T, [°F]) and Humidity Ra'gy@ [b/1b]).
Z2 9 J,;;-

i

|5|

L i
Ot h:u - Fan
Jf\

Q Dampers

Jll['r Cooling / Heating

4
\
\&Q}«% ixlum ar Therrmil zone

—. Supply air

Figure 5.24. Block diagram of a simple HVAC system

The system operation is described as follows, outdoor air
flows into the system mixing 25% of it with 75% of the
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returning air, expelling the rest. The mixed air passes
through a filter to the heat exchanger, where itis conditioned
to the set point. The conditioned air is propelled to the
thermal zone with a fan. The system requires to control the
variables T, and W;, simultaneously, based on thermal
loads, by varying the fan speed, u,, to regulate the airflow
rate and the cold-water pumping rate, u,, from the chiller to
the heat exchanger [154]. The differential equ éb of
energy and mass balances known from the Cfﬁ%ﬂonal
mathematical model of HVAC systems red@ for the

simulations are: éQf
. f hg
T3=—(T2_T3)_C V(W W3 {&'\(b

Sec v Qo= hygMo) (5:24)
125C, 7,

wy) + Mo (5.25)
s 3 st .

_r

fh gpm

_ _@%\(0 25W, + 0.75W, — W) — 6000 AT
% w IS the enthalpy of liquid water, W, is the humidity

f outdoor air, h;, is the enthalpy of water steam, V), is

the volume of the heat exchanger, W is the humidity ratio of
supply air, W; is the humidity ratio of Zone 3, C,is the
specific heat of air, T, is the temperature of outdoor air, M, is
the moisture load, Q,is the sensible heat load, T, is the
temperature of supply air, T; is the temperature of Zone 3,
V. is the volume of Zone 3, pis the air mass density, f is the

(5.26)
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volumetric flow rate of air (ft3 /min), and gpm is the flow rate
of chilled water (gal/min). The assumptions made in the
derivation of this mathematical model are also detailed in the
study of Arguello-Serrano and Velez-Reyes [158].

Representing the system in state space notation for
designing the control system, let be f =u, and gpm =u,
the control actions that modify the target variables xu= T3,
X, =Wy, x3=T, y,=T;, y,=W;. The
parameters are defined to complete the mo ‘al = 1/
az_hfg/ pYs a3_1/pCp S? (14—1/p /Vhe- :82—
1/pCpVpe, B3 = hy,/CyVye The mathem model from
(5.24)-(5.26) can be re-written in the n@form as:
%1 = U a,60(x3 — x;) — uy@,60(
+a3(Q0 hegMy) (527)
X, = U 0,60 x2) +a,M, (5.28)
X3 = uyB,60(x; — xalé;%&w(% —xy)
—u,3560(0. 2{@ ¥ 0.75x, — W,) — 6000u,B,  (5.29)
=X, 5 Y= Xy (5.30)

Tables 5,1Qand 5.16 contain the numerical values chosen
for thel ulation and the system parameters at the
ope G‘%’ point, respectively.

Table 5.15. Numerical values for system parameters

p = 0.0074 [Ib/ft3] Cp = 0.24 [Btu/Ib°F]
Trer =55 [°F] Tarer = 71 [°F]
Wsrer = 0.0088 [Ib/1b] Ve = 60.75 [ft3]
fres = 17,000 [ft3/min] V; = 58,464 [ft3]
W; = 0.007 [lb/1b]
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Table 5.16. Numerical vales for system parameters at the
operating point

x) =71[°F] x9 =0.0092 [Ib/1b]
x3 =55 [°F] T = 85 [°F]
W, = 0.0018 [ib/1b] M = 166.06 [Ib/hr]
u? = 17,000 [ft3/min] ud =58 [gpm]
Q2 = 289,897.52 WP = 0.007 [lb/1b]

To implement the LAMDA controllers in eacw control

variables, it is necessary to analyze if a dec g stage is
required to implement independent co ers for each
variable. The process to identify the\@?rrelation between
inputs and outputs is based on thg&pr cedure of reaction
curves to obtain the transfer func ﬁqs applying a step at one
of the inputs, and monitoring (g‘response at the outputs,
obtaining the numericalyV@yes in the form of FOPDT
system. The detailed edure to obtain the transfer
functions is presente 154]. The linearized model can be
represented by the\Qs) matrix:

X(s) =G(s)U(s) (5.31)
G(s) _’&?gzz

Q} 9.8164 X 10+ ¢ 00016 —13973 g=000125]

0.2137s + 1 02301s +1 |
|—1.1764 x 10~7 ¢=00011s . |(532)
0.0527s + 1 |

From (5.32), the gains of the transfer function are obtained
to formthe gain matrix K.

—4 _
K = 9.8164 x 10 1.3223] (5.33)

-1.1764 x 1077
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The relative gain array RGA [159] (Bristol's matrix) is used
to measure the interaction between the inputs and outputs
in a multivariate process, and it is defined as:

RGA(K) = A(K) £ K x (K~1)T (5.34)

The operator x denotes the element-by-element
multiplication:

[t A0 1 G.;é
AEY =1, /122]_ 10 N 35)
A(K) shows the dependence between tﬁ\%puts and
outputs. Based on these terms, the deco stage is not
necessary for the control. Due tq #hie "HVAC system
characteristics and the resulting paraméters of A(K), the

control design with two independ MDA controllers, one
for the temperature x; and an for the humidity ratio x,,

is feasible. ‘b’
uz& and u; = x, (5.36)
Finally, to procee the simulation of the proposed

control, the HV, system is discretized by applying the
Euler methodf@ equations (5.27)-(5.29) considering the
sample ti -

xy (e F9O°= T, [y (k) at; 60(x5(k) — x, (K))

QQ} — 1, (), 60(W, — x, (k)
+a5(Qo = hegMo)] +x,(k) (537)
X, (ke + 1) = T [ug (R)ay 60(W; —x, (1)) + s Mo ] + 6, ()
(5.38)
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x5(k+ 1) = Ty [uy (k)B,60(x; (k) — x5 (k))
+uy (k)B,15(Ty — x, (k)
—u, (k) B360(0.25W, + 0.75x, (k) — W,) — 6000u, (k)B,]
+x5(k) (5.39)
Figure 5.25 shows the operational scheme of the control

system with two separated control loops in the appligation
stage, to regulate the two variables in the thermaj,.ébace of

the system. Q;\
2

7 u(k)] LAMDA
! ] Identifier 1

LAMDA I2.\
Wiarer (k+1) Controller 1 (k) e — W (k+1)
ref
system .
-
U, ()

Tarer (k1) — LAMDg
Controllg ° — Ts(k+1)
euZ(k)

2%
Q O,
b\ LAMDA
' Loy | Identifidy 2 7t
QN N ity [ident
~ = \

re 5.25. Adaptive control structure for the HVAC system

For the training stage, the LAMDA Identifier 1 uses two
inputs [W;(k + 1); W; (k)] (because it has been considered
a first-order plant based on [154]), each with two classes,
the design parameters aren, = 0.02, 8, = 0.01, 4, = 0.997.
LAMDA Identifier 2 uses two inputs [T;(k + 1); T;(k)], each
with two classes, and the design parameters are n, = 0.95,
B, =0.01, 4, = 0.997. The sampling period of the simulation
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is T, = 1.2 min. A random input is applied to the plant that
consists of 60 different random values of 54 min duration.

In Figure 5.26, the online learning block (LAMDA Identifier
1) is placed between the control action u, and the output
Humidity Ratio W, to learn the inverse model of the system
using current and past information. The system output W,
and its previous state are used as inputs for the identifier, in
order to minimize the error e, (k) = u, (k) — uk(k), uk
is the output of the LAMDA identifier. The mini ion of
e, (k) allows adjusting the parameters of the Q})A model,
which are updated in the controller at e mple time.
The procedure described above is similarly\applied to control
the temperature T; of the Thermal , considering the
minimization of the error e,,(k) %uz (k) —uk(k), where
uk (k) is the output of the LAMD ntifier 2.

The performance of Adapti%@MDA controller is analyzed
by evaluating its resp in the presence of abrupt
disturbances, to test { bustness. The IAE is compared
with the controllers y-Pl, LAMDA-PI and ANFIS. Fuzzy-
Pl and LAMDA-P. e designed based on the expertise of
the plant. ANF)§nd LAMDA based on online learning were
set with thesgalfe values for the parameters applied to the
learning gtde. Two types of disturbances are applied to the
HVA tem separately, to observe the behavior of each
c variable in the Thermal Zone 3: Heat and Humidity
j0 (see Figures 5.47a and 5.47b, respectively).
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Temperature Disturbance [°F]
Moisture Disturbance [Ib/Ib]

°

| nEE
teT 12tiﬂﬂ:[h] crm e et 12tim:[h]‘s * %2' “
(@ 0 D
Figure 5.26. (a) Heat disturbance signal, (b) Mois isturbance
signal applied to robustness ana
First, only the temperature disturbanc é’applied to the
plant. Figure 5.27a shows that the coh%action u, stays at
17000 [cfm], while the Humidity K@) stays at 0.0092 [lb/

Ib]. Thus, the temperature dis nce does not affect W,
as shown in (5.37)-(5.39).

I

<10

Fuzzy-Pl NG 08

Fuzzy-Pl Adaptive LAMDA
LAMDA-PI ference

LAMDA-P| — — = - Referenc
ANFIS

Control Action u1 [cfm]
~
Humidity ratio [Ib/Ib]
S

\ 8 10 12 14 16 18 20 22 24 4 6 S 10 12 14 16 18 20 22 24
‘\3 time [h] time [h]

(b)
Figure 5.27. Comparative results with temperature disturbance:
(a) control action u,, (b) Humidity Ratio W,

Figure 5.28a shows the behavior of the control action u, and
Figure 5.28b shows the variation of the temperature T,
when the temperature disturbance is applied.
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The calibration of the non-adaptive methods in this system
has been complex, and it takes a lot of time for this process
because there are two controllers and several parameters to
set, such as gains, the classes and their values. These
methods control the plant properly when abrupt
disturbances (the worst conditions) are applied to the output
temperature, as shown in Figure 5.28.

Pl s
LAMDAPI —— Adapive LAWDA | 5o

Control Action u2 [gpm]

12 14
time [h]

Temp T3[°F]

0 12 4 1e 8 20
time [h]

(b)
Figure 5.28. Comparative results with temperature disturbance:
(a) control action u,, (b) Temperature T;
The adaptive proposal avoids the problems exposed in the
design of the non-adaptive controllers. The control signal of
Adaptive LAMDA is abrupt with respect to the Fuzzy-PI and
LAMDA-PI controllers, due to the learning parameters
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selected for this experiment. See the zoom in Figure 5.28,
where the effectiveness of the proposal is evaluated
gualitatively, highlighting the transient in the response of the
controllers, and observing that the method responds quickly
without error in steady-state. The ANFIS control being the
most similar to Adaptive LAMDA, has a fairly abrupt and
oscillatory response, which consequently leads to greater
overshoot and presents a steady-state error (£0.5[°

In the next experiment, the moisture disturban ﬁs\applied
to the plant in order to analyze how the vari T; and W,
are affected, and how the controllers ar e to regulate
them. Figure 5.29a shows the control\z@on u,, and Figure
5.29b shows the behavior of Hum Ratio W for all the
analyzed controllers. In Figure 5. % presented the control
action u, and in Figure the behavior of the

Temperature T, for all thegbl ed controllers is shown.

Control Action u1 [cfm]

\ ! /
&7 6 8 10 12 14 16 18 20 2
time [ S N

(@)
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98 ‘Adaptive LAMDA
~-Reference

Humidity ratio [Ib/Ib]

4 6 8 10 12 14 16 18 20 22
time [h]

(b)
Figure 5.29. Comparative results with moistu&(urbance: (a)

ANFIS
Adaptive LAMDA

2

[

Control Action u2 [gpm]
o 9
g 38

(b)
Figure 5.30. Comparative results with relative humidity
disturbance: (a) control action u,, (b) Temperature T;
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Figures 5.29 and 5.30 show that the abrupt moisture
disturbance applied to the Humidity Ratio, affects the
variables W, and T;. For the Humidity Ratio, it can be seen
that the output of the Adaptive LAMDA control presents few
oscillations in the transient response, and itis quick to reach
the reference (fast convergence), without overshoot
because the control action is not abrupt. This demongrates
that the online learning performed by the algorithmaﬁibn the
system is subjected to disturbances is ade @Z\(see the
zoom in Figures 5.29 and 5.30). The co nce of the
approach is better than the non-adaptive thods and the
transient response is faster. The ca(%tion of the non-
adaptive methods in this case @.an extra complexity
degree due to the interaction b n the input and output
variables, which is avoided WiQAdaptive LAMDA. Itis also
observed that this appro much better than the ANFIS
controller, which is os ory and not able to reach the
reference, presenti error in a steady-state of around
+0.2 x 1073[°lb/, specially with the disturbances at time
6h and 13h. selected learning parameters of the
algorithm, adequate for the HVAC system, and the
aIgorithr@vorks very well with only two classes per
desc r, reducing the computational time.

F&}ure 5.30 shows that Adaptive LAMDA can regulate the
Temperature T, properly. Control actions of Adaptive
LAMDA are less abrupt than Fuzzy-PI controller (black line),
and stabilize the system in a very short time as desired in
control systems, which allows to conclude that the selection
of learning parameters is adequate for rapid convergence
without overshoot in response, such as LAMDA-PI (method
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that requires a complex calibration). ANFIS, as in the
previous cases, is the controller with the most oscillatory
response. In this case, the steady-state error is around
+0.25°[F] for the two initial disturbances, and for a
disturbance at time 19h the error is zero, but reaching this
value in a longer time compared to the other proposals,
which is not useful in these systems.

A gquantitative analysis, computing the IAEs after aﬁying
the temperature and moisture disturbances t @Iant, is
shown in Table 5.17. )

For the temperature disturbance, the ptive LAMDA
controller is the best (minimum valu For the moisture
disturbance, Adaptive LAMDA is @» best controlling this
variable, and the second-best Q&ontrol the temperature,
with the advantage that it dgeswiot require a tuning method
for the parameters and a 6 ous knowledge of the plant.

The LAMDA-PI conkq@ presents competitive results due
to the fact that ag&xhaustive knowledge engineering has
been used to %élish the classes and rules on which the
control actignst@re defined, which is a process that requires
time and’&t be properly calibrated. It is not required by
Adap '@\LAMDA, being this its main advantage.

gé case of the temperature disturbance, since the
humidity ratio variable is not affected, there is no reference
change in that variable, as shown Figure 5.27. Because of
this, the 1AE in controller 1 is zero in all cases.
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Table 5.17. Numerical values for IAE for the HVAC experiments

IAE computed with Temperature Disturbance

Contro Fuzzy-PI LAMDA-PI ANFIS Adaptive
-ller LAMDA
1 0 0 0 0
2 2.04 1911 7.689 1.529
IAE computed with Moisture Disturbance
Fuzzy-PI LAMDA-PI ANFIS Adaptive
LAKMDA
1 37x10~* | 34x10~* | 1.9x10°3 | 2R 104
2 1.879 0.377 2912 ¢ w,‘ 0.492
82}
5.2.2.2 Case Study 2 \(2}
Here, to test the controller it is usegha similar mixing tank

presented in subsection 5.2.1.%

fluids inside a tank where th
considered constant V = @ft and manual valve is not
. The mathematical equations

placed therefore W;(t
that describe the
change with res

&

consists of mixing two

) Energ% ance in the mixing tank

W, (OCET (0 + Wy ()Cp, Ty (8) — (W, (6) + Wy (£)) Cps T (£)
dTs(t)

$©

Time delay (dead time)

=VoCv,

uid volume in the tank is

mic behavior of the system and
the case study analyzed above are:

7 (5.40)

LAp
Wy (t) + W, (t)

As proposed [127], the system can be approximated to a
FOPDT as shown in (5.7) and modeling the dead time using

to() = (5.41)
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a first-order Taylor series approximation, the model of the
process in the time domain is:

X(s) _ K & 42
UG) - Gs + Dtgs + 1) (5.42)
Resulting in a second-order system, in a discrete-time:
X(2) a;z+ b,
= 4
U@z cz2+d.z+f, %{8 3)
where a,, b, ¢, d,,f; are functions dependent ,} to- The
discrete-time model is variable and it dep, on these
parameters. Developing (5.43), considerin time k:
u(l) = (1/a)lexCk + 1) + dyx () + £ 1) — bk — 1]
<\"?> (5.44)
It is important to clarify that if plant model is completely

unknown, the number of ?Qous states (p and q) of both x

and u could be take erimentally, until obtaining an
adequate adjustmellt\){b e training stage.

For the initial !@ing process, the algorithm parameters
have been sef&n the following values n = 0.00025, 8 =
0.001, 1 = Qand a sampling period T; = 0.4 min. The inputs
are @Ql);x(k);x(k— 1);u(k—1)], each with two
cl ¥ A random input is generated for the plant that
s& sts of a sinusoidal signal from 0 to 200 min, and
100 different random step values of 143.6 min duration.
Figure 5.31 presents a comparison between the two
techniques that require a training stage (ANFIS and
Adaptive LAMDA). Itis observed that LAMDA presents less
error with better adjust to the actual data u(t) applied to the
system.
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Figure 5.31. Comparison of learning algori a) adjust in the
training stage with actual outpu a b) error

Once LAMDA has been trained, @proposed controller is
tested in the plant under distu es produced by varying
hot stream W, (t). As showpy(5%40), the dead time changes
depending on W;. The ¢ es of the hot stream and the
dead time have bequgékented in Figure 5.16. The variable
dead time causes namics of the system also changes,
so it is appropr'@%% use an adaptive method to test the

adaptive contl g

The copilte control scheme for the mixing tank with
varia% namic, is presented in Figure 5.32, which shows
the@pline identification and the control blocks. The LAMDA
idehtifier inputs based on (5.44) are [x(k + 1); x(k); x(k —
1); u(k — 1)], and in the LAMDA controller the inputs are

[ (R); x(k); x(k — 1); u(k — 1))
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Mixing
Xrer (k+1) — | AMDA u(k) Tank
Controller

x(k+1)

LAMBA T

N u (k) Identifié\l; E

Figure 5.32. Adaptive control structure for the Mixing@(%(

The tests are carried out for the controllg{%\:uzzy—Pl,
LAMDA-PI, ANFIS and the Adaptive LA Figure 5.33
shows qualitatively the effectiveness of the” proposal. The
Adaptive LAMDA convergence to thie&ference is faster
when W, changes abruptly, takingZ¥nto account that the
controller design has not re the plant model or a
calibration stage, as inthe casxb the Fuzzy-Pl and LAMDA-
PI controllers. It has b observed that the proposed
learning algorithm with classes per descriptor is able to
control the system@perly, with the advantage that the
computational i less with respect to the use of more
classes. Altho technigques without learning respond well
to the corfel of this system, they have an oscillatory
respons@t higher overshoot, especially in the case of the
distuugﬁce at time 450min, which causes the system dead
ﬂ@b change abruptly (see Figure 5.33a). At this point, the
adaptive LAMDA corrects it in less time without requiring
additional calibration, since it adapts to these changes
automatically with the LAMDA identifier block that learns
online. Disturbances at time 10 min, 120 min and 250 min
are quickly corrected with minimal overshoot by Adaptive
LAMDA with excellent performance. Additionally, it can be
observed that the non-learning methods (Fuzzy-Pl and
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LAMDA-PI) degrade their response considerably as the
plant changes, which is an important aspect of the
performance of the system. Adaptive LAMDA does not
degrade, and its control action is smoother than the other
controllers, which is an important advantage since inthe real
system the actuator is not overstressed (see Figure 5.33Db).
In the case of ANFIS, it is observed that it maintains an error
in a steady-state, that is, the algorithm is not able ch
the reference. One solution would be to place arcgi?fnal
integration stage to correct it, which would i@rease the
computational time and the complexity &Qhe controller
design.

Fuzzy-PI Adaptive L.
LAMDA-PI = = = -Referei

300 400 500 600 700
time [min]

(@)
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Figure 5.33. (a) Comparative re ke of the system
(temperature) (b) Appli%ﬁq trol actions

The effectiveness of the %\i d results is quantitatively
evaluated by the comp of the 1AE presented in Table
5.18. Additionally, tl rcentage change A from the best
IAE value is corq@ed to observe the improvement in
performance t @

Table’5. IAE of the controllers applied to the mixing tank
X 0 process
x@e‘? Fuzzy Pl | LAMDA PI | ANFIs | Adaptive
NAE

LAMDA
5.719 5.185 34.82 2.809
A 68.25% 59.44% 170.1% -

The index with the lowest value is Adaptive LAMDA,
because it reaches the reference quickly and with lower
overshoot. Inthe presence of disturbances, it can be seen
that the adaptive proposal is better at around 60%, with
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respect to Fuzzy-Pl and LAMDA-PI, and in 170 % with
respect to ANFIS (the most similar approach) since this
method is not able to reach the reference. These
percentages show the potential of the learning algorithm in
these types of systems.

5.2.2.3 Case Study 3

Finally, to validate the proposed controller in ing
trajectory tasks, its application in a moblle ot is

presented. Trajectory control of a mobile robq\?one of the
objectives to be achieved in the fieldy&Psautonomous
robotics, due to the large number of as d applications
as: risky or hazardous tasks for tm{%ﬁumans, defense,

medical, automation of mdustne;%d processes, among

others [160]. Because the dyn odels of these systems
are complex to obtain, uld present errors, it is
necessary to design robu&ntrollers that can compensate
for these problems. Féz}vt is reason, Adaptive LAMDA is
applied to these s s, in which the algorithm will learn
from the dynampics of the system (which is completely
unknown) for t@ velopment of the controller based on the
inverse I, without requiring previously the dynamic

robot in order to apply it to the task of tracking
diff@?trajectorles in arobot simulation environment.

5.2.2.3.1 Robot Model

The unicycle type robot is widely used in the field of
automatic control due to its fast and nonlinear dynamics.
Figure 5.34 shows a representation of the robot, where v
and w are the linear and angular velocities, respectively, h is
the point of interest with x, y coordinates in the XY plane, y
is the orientation of the robot, a is the distance between h
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and the central point of the virtual axis B that connects the
wheels, and r; is the radius of the wheels.

Figure 5.34. Parameters of thegdicycle-like mobile robot

The complete mathematical Q)resentation of the mobile
robot consists in the kine and the dynamic model. The
general discretized kidggiiatic model, assuming that the
disturbance term is, \Qéro vector and considering that T is
the sample time{?%, is:

x(k +1) {b cosy (k) —asinyp(k) (k) x(k)
y(k+ Ts|siny (k) acosy(k) l w(k) + [y (k)

Pk @1 0 1 Y(k)
Q} (5.45)

ﬁw] is proposed the application of two controllers, one of
them based on feedback linearization for the robot
kinematics, and the other one based on the dynamics. For
the design, the dynamic model as unknown (black box) is
considered, thus, its identification and control is done with
the Adaptive LAMDA, which is the main contribution in this
experiment.
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5.2.2.3.2 Kinematic Controller

The kinematic controller (5.46) is based on the robot
kinematics (5.45), considering the coordinates of the point of
interest [x, y]T. The control law is:

r cosyp (k) siny (k) 1
[vﬁef(k)] T, T, |><
e (k) 1siny (k) 1cosy (k)| :b.
a T a T J Q)

ref(k + 1) + I, tanh (—e (@ x (k) |
|(5 46)

Yooy (k+ 1) +1, tanh (@E (k)) (k)

where a >0, [Vief(k) wrep is the output of the
kinematic controller, e, ?&Xref(k) —x(k), and e, (k) =
Vrer(k) — y(k) are the ion errors in the X and Y axis

l,l,eR are s on constants. The tanh(-) function is

added to avoid’é turation of the control actions in the case
of large po n errors [162]. In the stability analysis, perfect

veloci ckmg is considered, vy,((k)=v(k) and
= w(k) By replacing (5.46) in (5.45), the closed-

equatlon is:

a1 |[l,ctanh(llC e (k)>]
Gwrol) e A=l e
{lytanh( e (k))

respectively, k, > EEE\Q > 0 are the gains of the controller,

|
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Defining the output error vector as h(k) = [e,(k) e, (K],
then (5.47) can be written as:

|rlx tanh (? ex(k)>]|
hk+1) = ' * ' (5.48)

ky |
lly tanh L, ey(k) J

In [161] has been selected the Lyapunovs idate
function for the kinematic control law as V (k) @ (k) (k).

In the cited paper is demonstrated th b|||ty of the
kinematic controller for tracking trajectorj the parameters
aresetas k, >0,k, >0, [, >0an($ 0,then h(k) - 0

for k - oo,
‘&»

5.2.2.3.3 Dynamic Contgoller

The design of the dyna ontroller is complex because a
large number of par rs corresponding to the actuation
mechanisms and @sical variables of the robot must be
considered in time. For this reason, non-adaptive
controllers &@y Pl and LAMDA-PI) are not tested in this
experi ince their calibration is complex and time-
consu$ therefore, the adaptive methods are appropriate
in system. The following results are for ANFIS and

ptive LAMDA since they are proposals that can learn
about the dynamic of the system and do not require
parametric calibration for the design.

In this case study, the benefits of the Adaptive LAMDA are
clearly appreciated since the algorithm learns the dynamics
of the system, which is considered as unknown and variable.
The method is used to model it as follows: in the training
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stage, LAMDA is applied to learn the inverse dynamic model
based on the scheme of Figure 4.6a. The controller takes as
input information the computed reference values in the
output of the kinematic controller [Vier wref]T and the
measured variables of the robot [v w]T. With this
information, the identifier updates the internal parameters of
the LAMDA model in the controller (obtaining the inverse
model) in each sample time. For the training s the
LAMDA Identifier 1 uses two inputs [v(k + 1); , each
with two classes, 7, = 0.08, §, = 0.01, 1, = &§89. LAMDA
Identifier 2 uses two inputs [w(k + 1); w( ach with two
classes, n, =0.08, 5, =0.01, 1, =0 ” The sampling
period of the simulation is T; = 0.1 seg M¥X'sinusoidal input of
670 samples is generated for the (%’m Figure 5.35 shows
the comparison of learning aggéhms in the robot, which
shows a better fit to the r lues of linear and angular
velocity of the adaptive L@A with respect to ANFIS.

Linear velocity [m/s]

o o] [
\& ¢ 10 2 x @ s e 10
Time [s] Time [s]
@) (b)

Figure 5.35. Comparison of learning algorithms in mobile robot
(a) linear velocity, (b) angular velocity

In the application, the controller computes the output
[vEr (k) wﬂef(k)]T necessary to bring the system to the
reference. The proposed structure, with an external

179



kinematic controller and an internal dynamic controller
based on the adaptive methods (LAMDA or ANFIS), is the
cascade scheme shown in the block diagram of Figure 5.36.

S 1
- —~
/ V() LavioA
[ [ wenifier1
| 7

x(k+1)|

* v(k+1,
4.{}% -
oo (k1) Kinematic | Verer (R & i T |k 1=y s 1)
ref= ref inematic ref| Wheel Dynamic Disturh inematic
Yrer(k+1) [+ Controller | Speed Model Surbences | Model
s W (k) e 2 »
™ y
(k+1 <

A eu (k)

\ N LAMDA [ (— \

\ \ 1

N @l dentifier2 Q‘
Ll

Al
N2

Figure 5.36. Adaptive control structure(g a mobile robot

In the scheme, the online learning plock (LAMDA Identifier
1) is placed between the contr {attion computed by the

dynamic controller v, ((k) an measured variable v, to
learn the inverse dynamicg/@fthe system using current and
past information. The |i velocity v and its previous state

are used as inputs f € identifier, in order to minimize the
error e, (k) = v& — vk s (k), where v, (k) is the output
of the identifi e minimization of e, allows adjusting the
parameter the LAMDA model that are updated in the
contro%t every sample time. The procedure described
abovg similarly applied to control the angular velocity w,

ering the minimization of the error e, (k) = w% (k) —
wrer(k), where wy, (k) is the output of the LAMDA Identifier
2. The control variables are the motor velocities, then it is
necessary to compute the speed for the left and right wheels
Q, and Qp, respectively, based on the values of

[vL (k) wd (k)] . These relations are given by:
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2ve (k) — dwd, (k
0, = rey )Zr rey () and
1

207, (k) + dwfer (k)
'QR =

o (5.49)

The proposed controllers are tested on a Pioneer 3DX robot
[163] inside the Virtual Robot Experimentation Platform (V-
REP). VREP allows simulating robotic systems corPgSring
their kinematics, dynamics and the physi(;\ the
environment [164]. The versatility of this soﬂvvgt\e;k linked to
the availability of plug-ins to con@% ith other
computational tools, such as Matlab, wh the algorithms
have been programmed. The main u terface of V-REP
with the Pioneer 3DX robot is shov@n Figure 5.37.
25

A& 4
Matlab Q(/V-Rep Environment

Environment
V,o (&

k (\)0(&‘- m

({xl fy, ¥ ’
!2 §:ﬁeal y Wreal -
Figur Q V-REP scene showing the Pioneer 3DX robot

The ;@rmance of the Adaptive LAMDA controller is tested
aﬁs the ANFIS, such that the operating modes are
sifiilar to make a fair comparison. In this case study, the aim
is to perform the trajectory control of the Pioneer 3DX
applied in three different paths, applying a load to the robot
(as a disturbance) to modify its dynamics and analyze the
performance of the controllers. Graphical and numerical
comparisons are performed to test the performance and
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effectiveness of the algorithms in this control task (see IAE
in Table 5.18).

Three trajectories are tested: Circular (5.50), Lenmiscate
curve (5.51) and Square (5.52). The starting point of the
robot in all cases is in the coordinate (x,y) = (0,0)m.

Xre (k) = 2 c0s(0.033nkT,) 5 50)
Yoy (k) = 2 5in(0.0337kT,) &

xref(k) = 1.2sin(0.0637kT,) % -
Yror (K) = 25in(0.0315mkT,)  &K&° 5D

Xper (k) = 1.5V kT, € [0,15] ; (4.5 — o.z;«ﬁ V kT, € [15,30];
—1.5V kT, € [30,45]; (—10.5 + ONKF,) VKT, € [45,60]
| Vrep (k) = (=1.5+ 0.2kT,) ¥ kT, €4815] ;1.5 V kT, € [15,30];
| (7.5-02kT,) VKT, € [304;; —1.5V kT, € [45,60]

Figures 5.38, 5.39 and 5.48, show the comparative results
for the Circular, Lenm&e and Square trajectories,
respectively, in whi e response of the ANFIS and
Adaptive LAMDA rollers are shown, as well as the
position error |n h trajectory. Additionally, the linear and
angular spee erences are shown, with the respective

real vaIu; ached by the robot. During the simulation of

(5.52)

this e ent, a 3.5kg load is added and removed on the
different time instants, affecting its dynamics to
a& ze the controllers’ response.
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Figure 5.40. (a) Square trajectory followed by the mobile robot,
(b) instantaneous quadratic error of the robot position, speeds of
the robot and control actions (c) linear and (d) angular velocity
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Figures 5.38a, 5.39a and 5.40a show the paths followed by
the mobile robot. The results show qualitatively that the
Adaptive LAMDA provides finer and more efficient control
with respect to ANFIS (the two methods designed with the
same learning parameters), getting a smaller distance error
with respect to the references, and especially, under
disturbances. The instantaneous quadratic error of thg‘xpbot
position controlled by the Adaptive LAMDA has Cﬁerage
of 2cm (see Figures 5.38b, 5.39b and 5. \a value
considered acceptable taking into accoun r@ he dynamic
of the controller is not based on the mathégaatical model of
the system. In the case of the square,\@observed that the
errors in the corners reach values cm due to the abrupt
changes in the robot’s orientatio t as observed, they are
quickly corrected by the LAME@controller.

The linear speed in al tested trajectories is around
0.2m/s (see Figure ¢, 5.39c and 5.40c), references
reached by the ptive LAMDA controller with fast
convergence, skowing to be more efficient qualitatively than
ANFIS due to% ofter response and better in quantitative
terms nﬁ it alyzed the IAE values in Table 5.18. Then, it
is cle the learning parameters set for the linear speed
C r are adequate because Adaptive LAMDA does not
983 oscillations in the control actions, while ANFIS
presents a large number of oscillations, with amplitudes
around 0.4 m/s, which is excessive if compared to
established referencesthat can damage the actuators by the
applied energy variations.

In the case of angular velocity, the tests show that the
Adaptive LAMDA presents smooth control actions again.
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The ANFIS proposals have oscillations around the reference
of +5rad/s. This behavior can be seen in the Figures 5.38d,
5.39d and 5.40d, where it is observed that the proposal
converges faster to the references than ANFIS. Also, the
learning parameters set for the angular speed controller are
adequate because the method does not show excessive
oscillations in the control actions. LAMDA is much better
than ANFIS because the control action is smooth‘,rg@/ing
that the actuators are not abruptly actuated to h the
reference in steady-state. The reduction of th illations is
considerable, which is one of the stro&pomts to be
highlighted by LAMDA. Finally, from sults obtained
through this experiment, it has been p le to analyze the
performance of the Adaptive L tracking controller
applied to the dynamic mﬁ@ of the mobile robot,
demonstrating its ability t w the established speed
references, and therefor desired trajectories. From the
guantitative point of Vj in this experiment, it is observed
the benefits in perf nce terms of the Adaptive LAMDA
with respect to ‘\A FIS controller, as can be observed in
the results of @of Table 5.19 for all the paths. All these
perform mprovements are the result of two important
factor @use of aggregation operators in the GAD
co |on and the adjustment of the exigency parameter,
dapts to system variations online.

Table 5.19. Numerical values for IAE for the mobile robot
experiments

IAE for trajectory tracking of a mobile robot
Trajectory ANFIS Adaptive LAMDA A%
Circle 5.725 5.038 12.77
Lenmiscate 2.495 2.101 17.15
Square 7.632 6.510 15.87
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In all cases, the performance of LAMDA is better in a
percentage greater than 12% over the ANFIS controller,
when they were tested in the different trajectories. Under
disturbances that affect the dynamic of the system, the
proposed controller is the least affected and the one that
converges more quickly towards the reference, which gllows
to validate the approach in fast dynamic robotic sy@

r‘\
5.2.3 General comparative analysis amos@MDA
controllers éQ;

Once the different proposals for LA% controllers have
been tested, this subsection makes mparative analysis
of all the approaches addressed, t4 identify their behavior in
the mobile robot case studyg@ detailed in subsection
5.2.2.3, for the tracking trajegory, a cascade control strategy
composed of two controll s used, the external controller
based on a feedback éaﬁon for the robot kinematics
presented in (5.2.2@, and the internal controller applied
to the robot dy s where the LAMDA approaches are
tested. Two tr@ries are examined for the evaluation of
the metho and the results of the experiments are
$ . . . . . .
compar: @ alitatively and quantitatively to determine which
prop F\)erforms the most accurate control and presents
the @St results in terms of performance.

5.2.3.1 Rule-based LAMDA applied to the
dynamic model

Due to the large number of parameters involved in the
dynamic model, such as physical variables and actuation
mechanisms, its model identification and controller design is
complex. A simple method to obtain an approximate model
is through the reaction curve, in which an input signal is
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applied to the system, and the behavior of the output is
evaluated. The controllers are in charge of receiving the
linear and angular value references and computing the
necessary control actions to follow the desired trajectory.

Figure 5.41 shows the platform responses when a step
signal is applied to the linear and angular speeds; the
responses look like FOPDT models.

0.8

<}
®

- - - Reference
—Real

0.6

o
)

0.4

Linear Velocity [m/s]
o
IS

Angular Velocity [rad/s]

0.2

S
N

time [s] time [s]
@) Q?’Q (b)

Figure 5.41. Step respo ) Linear and, (b) Angular velocity

The parameter iden lon performed in Figure 5.41 gives
the following val for the linear velocity: K,=1, t, =
0.224 sec., tofﬁ.lM sec.; and for the angular velocity:
K,=1, §w<\0. 16 sec., ty,, = 0.0856 sec.

With @é@ knowledge of the approximate model's
ch ristic parameters, it is proposed the design of Rule-

LAMDA (LAMDA-PID) controllers. The inputs of the
controllers are e, é,, e,, and ¢é,,, where e is the error obtained
from the subtraction of the reference and the current system
output and e is its derivative. These variables are selected
to drive the system to the desired zero states, where the
errors of linear and angular speeds and their derivatives are
zero.
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Centers of fuzzy classes (), and their respective parameters
in the consequent y,,, are shown in Figure 5.42 to represent
the analytic expression that summarizes the fuzzy logic
inference presented in (4.1).

15
Cio: 720=0 Cyo: 720 =-1

Csips=0 Cis: V15— -0.5 Cos: }’25— -1
Col =0 Cio: Y= -1

= . ca V4=! 0 ] Cu: V14— -0.5 Cza Yza—,@

Caiy3=05 Cigl 718 = -

é | Cs: V3=‘1 C7'y;=l Cia: }’13—0 : ] Oczs@

Ky os . Cilyr=
Crp=1 Ciiy12=05 &22 =0
| | Cs: 6= 1 Cie: y16=

-
Cupn=1 Cu: V11 0.5 (b Coly1=0
s ] 05 o %. 15
. €,(t), €, 1& ‘

Figure 5.42. Defined classes outputs for the linear and

anggb/el cities

Considering that @) are the training data for LAMDA
operation, 25 cl s are defined for each controller, setting
the centers a mbination of the following sets:

_[» §50051][m péy = [-1, 050051][ ] 653

d
S&Q}—L—o.s, 0,05,1] [%] ;é, = [~1,-0.5,0,0.5, 1] [’"SLZ] (5.54)
The dynamic  controller computes the  output
[vﬁef(t) w?ef(t)]T necessary to bring the system to the
reference. The proposed structure, with an external

kinematic controller and an internal dynamic controller
based on the LAMDA-PID is shown in Figure 5.43. The
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scheme shows blocks with the scaling gains kp,, kd, ki,
kp,, kd, and ki, for tuning the response of the controllers.

. é e v(t) i
Vores (& Vet ) h=
ref= {rm,(t)} Kinematic | oynamic | V™| pynamic Kinematic

()
(1)

Fyrer(8) | + Controller Controller Model | P Model

Wrer (t) @ (8,
+:T eu(t) w(®
:_l_)y_rm_m_ic____________ “_______________76;&

| Controller

Controller 1 &

________

Figure 5.43. Control scheme for traj fbry tracking of a mobile
robot using LA&A—PID

5.2.3.2 LSMC and C applied to the
dynamlc del

The design ofthe L & near and angular speed controllers
is similar. Thus summarize the dynamic controller's
design, only tnﬁocedure for the linear speed is detailed in
this subsectign:’ Consider the FOPTD for the linear velocity
with the{ of (5.7):

S X,(s) Kye~'os
\l@ U,(s) T1,5+1 (5:55)

Modeling of dead time t,, with a first-order Taylor series
approximation [127]:

e tovS = _r (5.56)
tops+ 1

Substituting (5.56) into (5.55), it is obtained:
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X,(s) _ K,
= (5.57)
U,(s) ™~ Tyte,s?+ (7, +typ)s+1
Solving (5.57) in the time domain:
Tyt X+ (T, + to, )X +x—K,u=0  (558)

The system represented in state-space, where x; = x, is:

X1 =X
L ytty) 1 ’?
2= Tytoy 2T TvtOV “\% ° 59)

The form of expression (5.59) is similar to, t@éﬁg{asented in
(4.5). So, the procedure for designing stable LSMC
controller (as detailed in subsection 4({@ is feasible.

As shown in (5.59), the system sponds to a second-
order model (n = 2). From (4.%5&%) becomes:

s@t) = é,,(%@z/lev(t)uz f e, (t) dt (5.60)
The derivative of (5, (?ecomeS'
s(t)Q‘\e (0) +226,(0) + 2e,() =0 (561)

Forn—2|n(

€, (1) = &g, (1) — %, (0) (5.62)
Mor, @ replacing (5.59) and (5.62) in (5.61):
(t, + toy) 1 K,

$(t) = x4,(8) + 2

X1 — u
Tytoy Tytoy

+22¢,(t) + 2%e,(t) =0 (5.63)
Considering the values of the terms previously identified,
(K,/tyte,) >0, and based on (4.5), it is concluded that
b(X,t) > 0. Thus, the rule tables presented in Tables 4.1
and 4.2 are used. Figure 5.44 shows the classes defined for

Tylow
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continuous control action. For example, if $(t) = 0.5, then
the Class 4 is activated, resulting in a control action u,,.,, =
0.5 with the aim in order to satisfy $(t) = 0.

T

* LAMDA classes

A
o Cyl Upey=-0.5 C4: Upey=0.5
g CiiUp=-1 CslUnw=0 Cs: Uy =1
=
| 1 | 1 1
15 1 -0.5 0 0.5 1 ’@%1'5
8(t) \
Figure 5.44. Classes and rules for continuous ¢ action u,
based on $(t) for the linear velocity of th ile robot

Figure 5.45 shows the classes defin the discontinuous
control action. For example, if s(tys —0.5 and s(t) = —1,

then the Class 6 is activated, r, ng in a control action
U, = —1 inorder to satisfy s&‘t) <0.

20

- N
WL I M=0 L czoilfndzl L |
Cs: Upg=0 Cis: Upg= 0.5 Cosi Upg=1
ol A =0 T T Ctte=1 |
: Cy Un, ‘Q Cis: Upg=0.5 Cai Ung=1
= 7 % Cs: Ung = -0.5 | Cis: Ung = 0.5 | -
% 0 N =-1 Cizi Ug=0 Cosi Upg=1
s 9 Ciug=-1 C17: Ung = 0
'0'5(1\ S Upg= -1 1 Ciz Ulg=-05""] CooiUg=0 |
&o i Ce: ugd =-1 i Cie: Ung = 0 L
QQ; CiiUgg=-1 Cui: Ug=-0.5 Co1lUng=0
1.5 ! ! ;

-1.6 -1 -0.5

5(t)

1 15

Figure 5.45. Classes and rules for discontinuous control action uy
based on s(t) and s(t) for the linear velocity of the mobile robot

Finally, Figure 5.46 shows the block diagram of the
proposed general controller. It corresponds to a cascade
scheme with an external loop for the kinematic controller and
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an internal loop with the dynamic controller composed of two
independent controllers based on LSMC, one for linear
speed and another for angular speed.
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Figure 5.46. Adaptive LAMDRANStructure for a mobile robot

The ZLSMC has the r design of LSMC with the
reliability presented 4 ures 4.9 and 4.10. The Adaptive
LAMDA design ig{r&sented in section 5.2.2.3, for this
reason, the d{@ of these two methods used for the
comparison is Rot detailed.

The cor(@%s tested inthis section applied to the dynamic
mod C;hre: Fuzzy-PID, SMC, LAMDA-PID, Adaptive

DA, LSMC and ZLSMC. (In order to summarize
information, the PID results are not shown, however those
results are shown in [165]).

The tested trajectories are the Lenmiscate (5.51), and
square (5.52), with the starting point of the robotic platform
in the coordinate (r,7,) = (0m, 0m).
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To perform the qualitative analysis, Figures 5.47-5.52 are
presented. The response curves for the linear and angular
velocities, trajectory error, and trajectory followed by the
robotic platform controlled by each proposal mentioned
above, are shown in these figures.
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Figure 5.47. Linear velocity for the Lenmiscate trajectory: (a)
Fuzzy-PID, (b) SMC, (c) LAMDA-PID, (d) LSMC, (e) ZLSMC, (f)

Adaptive-LAMDA
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Figure 5.48. Angular velocity for the Lenmiscate trajectory: (a)
Fuzzy-PID, (b) SMC, (c) LAMDA-PID, (d) LSMC, (e) ZLSMC, (f)
Adaptive-LAMDA
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Figure ’@%) Lenmiscate trajectory performed by the different
methods, (b) trajectory distance error
@esults show that all the controllers perform the
trajectory tracking. From a qualitatively point of view, it is
observed the chattering presented in the controller action of
SMC (see Figures 5.47b, 5.48b and 5.50b), which is the
main drawback of this proposal being able to affect the
actuators by the oscillations in a real platform, this effect
decreases in the angular velocity of the square (see Figure
5.51b) because the robot follows straight lines.
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In both trajectories, the Adaptive LAMDA is the best,
reaching the reference in less time with a smooth control
action with minimal oscillations in the linear velocity. In the
square path, itis possible to observe that LSMC and ZLSMC
tries to decrease the error quickly but to see the differences
it is necessary to analyze the response quantitatively;
however, as the reference points change, then the controller
makes the robot change orientation and adjust f@}the
reference smoothly with errors in the corners of g&quare
smaller than the Fuzzy-PID, and LAMDA- PI error in
most cases is around 2c¢m, which corresp@ o the 1% in
di

terms of relative error considering the us and the
trajectories' side. In general terms Adaptive LAMDA
proposal that requires a previous mg stage is the one

that best controls the dlffergg%(a]ectones However, it
requires more computationgl, ti han the other proposals
due to the number of cal fons required [136].

The quantitative analyf8is’has been carried out based on the
IAE, ISE, and IS indices. Figure 5.53 shows that the
controllers ba@on LAMDA follows correctly the tested
trajectories ISE and IAE are the minima for the
dlfferent@§ods. The Adaptive LAMDA isthe best reaching
inles: d@we the references and decreasing the I1AE and ISE.

@ Lenmiscate trajectory, it is observed that LSMC
b&orms an adequate control, being in second place in
terms of IAE, and increasing its ISE value due to the initial
oscillation that it presents. In the case of the square
trajectory, LSMC quickly tries to reduce the position error;
this the reason why the ISE is the second best after the
Adaptive LAMDA.
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Figure 5.53. Quantitative comp. n (a) IAE, (b) ISE

The control effort is measured wi e ISCO metric which is
computed as:

0.
\Iéﬁ&é: f u(t)dt (5.64)
0
_ (O
This paramet’(j&grates the controller output square over

time, penalizi e control actions more than smaller ones
since the @uare of a large error will be much more
significad¥” Therefore, the controller that obtains the
minj ISCO performs the best. This index values
ted in the tracking trajectories are presented in Figure
5.54 for the linear and angular velocities control action.

The softer control actions are obtained for the controllers
Fuzzy-PID, LAMDA-PID and Adaptive LAMDA in each
velocity. The SMC controller increases the value of the index
due to the chattering present in the control actions. Besides,
it is observed that the LSMC controllers make a minimally
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greater control effort in the Lenmiscate trajectory. However,
in the square trajectory is observed that the control effort is
less than the adaptive LAMDA. This characteristic is given
by the calibration that has been given to the controller, in
which it has been chosen to consider the ISE as the
parameterization criterion. However, as shown in the results,
the variations of ISCO in all the controllers is minimal, which
allows to validate the proposal. It can also be noted I@the
control action of ZLSMC is a bit more abrup linear
speed), which is given by the calculation of 1{ tal utility
that brings the system to reference more qyigkly at the cost

of using more energy.
N2,
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L4777 3844
smc 2 smc Le21
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FUZZY-PID

Figure 5.54. Quantitative comparison for the different controllers
based on ISCO for the: a) Linear velocity, b) Angular velocity

In general, the best controller in terms of performance is the

Adaptive-LAMDA, followed by LSMC and ZLSMC, but it is

important to note that Adaptive LAMDA requires a previous

learning stage. On the other hand, LSMC is a chattering-free
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robust method that does not require the learning stage,
which reduces its computational time, but it requires an
adequate calibration to obtain competitive results as in the
case of LAMDA-PID.

5.3 Computational Complexity

5.3.1 Memory Usage

In this subsection is presented a summary of q?esults
published in the papers [136,138] wher &IC and
Adaptive LAMDA are presented with a cﬁete analysis.
No emphasis has been placed on analy e Rule-based
LAMDA sinceitis considered within thNZéMC proposal. The

computational complexity of th MDA controllers is
evaluated in terms of memory &e computation time and
number of operations [166]. programs are implemented
in Matlab R2020a, runni n an Intel (R) Core (TM) i7-
8750H @ 2.2GHz prg @or. The computational complexity
is computed bas \én the number parameters of the
algorithms, thes, e [: the number of descriptors (inputs),
c: the number@ asses in each descriptor.

V@)ry usage of LSMC

Theéq er of parameters to compute the controller output
+ uy, is based on the total number of classes m = ct.
To compute u., LSMC requires only the descriptor s, that is
[ = 1; hence, the number of parameters to be stored is 2c.
To compute u,, LSMC requires the descriptors s and s, that
is | =2; hence, the number of parameters to be stored is
2c2. Aditionally, the parameters o ; =025, a, 4, and four
scaling gains are required. The total number of parameters
to be stored in memory (#stored_values) is:
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#stored_values = 2c? + 2c + 7 (5.64)
In terms of Big O the algorithm has the function f(c):
fle)=0(c?) Vvc=1 (5.65)
e Memory usage of Adaptive LAMDA:

The number of parameters to be computed by the algorithm
in the learning (antecedent and the consequent) is based on

the number of inputs and number of classes in eac t, [
and c, respectively. The number of param in the
antecedents #parametersg () and #parame (k—1) Qre:
#parametersg,) = 2lc + 1 (5.66)
#parametersg._,) = 2lONF 1 (5.67)

The number of parameters of t %onsequent in the vector
h(k) is #parametersy,, and number of parameters of

the covariance matrix is # etersp,). These values are:
#paxq&ersp(k) =[m( + 1)]? (5.68)
gametersh(k) =m(l+1) (5.69)

Each value isgored in 2 bytes of memory [166].

Finally,»t@ otal number of stored parameters analyzing
from \6) - (5.69), gives as result the Big O function f(ml):
\l@ f(ml) =0(m?1?) Ym>1landVi>1 (5.70)

5.3.2 Computation Time

The temporal complexity verifies the time required to
compute the control output in each sample time. Tables 5.20
and 5.21 shows the sample average time of a total of 2000
samples, in which the control output has been calculated for
a different number of classes in each descriptor "c."
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Table 5.20. Computation Time (seconds) of LSMC (I = 2)

Number of classes "c" in each descriptor

3 5 7 9
U, 8.24-6 8.88e-6 8.98e-6 9.51e-6
Uy 8.71le-5 1.08e-4 1.13e-4 1.36e-4
u 9.53e-5 1.17e-4 1.22e-4 1.46e-4

Table 5.21. Computation Time in seconds (s) of Adaptive WDA

Number of classes “c” in each descriptofs™
2 3 4 RN
"l"| Lear | Con Lear | Con Lear | Con X¥eéar | con
ning trol ning trol ning tr%' ning trol
2] 140 | 408 | 169 | 448 | 490 | 5. 8.82 | 5.65
e-4 e-5 e-4 e-5 e-4 5 e-4 e-5
3| 208 | 524 | 110 | 6.43 1. 1.18 | 10.7 | 1.09
e-4 e-5 e-3 e5 | € e-4 | e3s | e3
4| 756 | 567 | 6.64 | 7.85, /985 | 784 | 1.02 | 46,5
e-4 e-5 e-3 e-4 e-3 e-3 el e-3
5] 1.87 | 9.07 | 162e &5 852e | 182 [ NT | NT
e-3 e-5 -3 -3 -3 e-3
6| 670 | 8.74 62@ 134. NT NT NT NT
e-3 e-4 [ 8\ 9
7] 451 | a7 ;CRTT NT | NT | NT | NT | NT
e-3
8 | 343e 26% NT NT NT NT NT NT
_§3 ‘Q_g

*NT ct@mds to not tested.

QQSB Number of Operations

The temporal complexity depends on the type of processor
and memory characteristics in which the program is
executed, for this reason, itis most appropriate to evaluate
the number of arithmetic operations (arithmetic complexity)
used to solve a problem. Subtraction, addition,
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multiplication,  division, squared and exponent are
considered as basic operations.

The computational complexity of LAMDA controllers,
compared to proposals such as conventional Fuzzy (number
of discretization of output universe of discourse suggested
(Myp) = 32 [166]), LAMDA without learning [154], ANFIS,
LAMDA and Adaptive LAMDA are presented in Table,5.22,
and the asymptotic notation is presented in Table ”5&

Table 5.22. Arithmetic complexity of the fuzzy corﬁ@}lgorithms

Arithmetic com@\y
Cglj‘z"zey“[ti‘égf' 4089m + 37ml + AT 59 + 21
Rule-based 5 N7
LAMDA [154] m? + 6mi3m + 5lc — 1
Adaptive m3 “1212 4 121 + 5)
ANFIS [72] +m2 (68} 121 + 10) + 8lc + 46
LSMC [138] N> 30c? +30c +47
Adaptive N\an3(413 + 12124+ 121 + 5)
LAMDA [136] +m}&+ 121 +9) + m(111 +2) 4+ 8lc + 48
N
Table 5.23. Arith@c complexity in terms of Asymptotic Notation
‘O Arithmetic complexity
Cé’lj‘z"z‘;r“f' fFanD) =0(ml) vm=>1landvl> 1
Rul ed
U!SA@[J-&‘] fm)=0(m?) vmz=1
“*:’ﬁ\ld;‘lps“rfz] FmD) =0m31%) vm=1landVvl> 1
LSMC [138] fF@ =0(c? vc=>1
LAA“;’SFX'E’%G] FonD) = 0m313)  vm=1landvlz 1

It is evident that the adaptive proposals are the most
complex in computational terms, which is logical due to the
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learning algorithm that they incorporate, these being of cubic
order with respect to the number of classes. Adaptive
LAMDA is similar to ANFIS when analyzing the number of
operations that these require for the learning and the
computation of the control output, the difference lies in the
linear term m, so it cannot be considered a relevant
difference. As it has been observed in the results of Table 1,

when working with a low number of classes | ch
descriptor, the algorithm is more efficient and re s less
computation time. Therefore, it can be appli systems

with 8 descriptors at a speed of 0.4 sec& in the worst
case, which shows the viability in the yse~of the adaptive
controller. AX

In LSMC, a quadratic exponent iN\fte term of a number of
classes in each descriptor i served. This shows the
simplicity, in computatio ?ger s, of the algorithm when
calculating the control . The LSMC can be applied in
systems with 9 cla at a speed of 0.15 milliseconds,
which shows the \@th in the application of the controller.
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6. DISCUSSION

6.1 Classification Context

LAMDA-HAD is able to work on classification problems
improving the performance of LAMDA. In most of the used
datasets, LAMDA-HAD obtains results as good as the best
classifiers like RF or LDA. LAMDA-HAD has the advantage
of creating new classes outside of the training stag% ing
widely superior to LAMDA, since it corrects @ errors
identified in the original algorithm.

The tests have been performed on dataséev‘vith balanced
and unbalanced classes, measuring rics according to
these characteristics (Accurac Q/and F-measure). In
scenarios with symmetric classaéhe accuracy of LAMDA-
HAD is very similar to the be8tlassifiers, and in cases of

asymmetry, our algorithmMis{etter when the descriptors are
overlapped, their data ution is similar, or where there
are a large number tliers.

Based on Tabl {5.2, 5.3 and 5.4 which summarize the
results of th@ MDA-HAD, the performance of this
algorithm' mparable to the performance of the classifiers
better. They show that LAMDA-HAD has a high
nce in tasks of supervised learning improving the
rmance in relation to the original LAMDA in all
benchmarks.

In unbalanced cases, LAMDA-HAD allows detecting the
characteristic of asymmetry between the classes. In this
way, the proposed algorithm identifies correctly the classes
of small number of individuals without assigning its objects
to other classes. This can be corrected by balancing the

209



classes, as has been made in the Wholesale Costumers
dataset as demonstrated in [105]. With this correction, the
accuracy of LAMDA-HAD is similar to the best classifiers,
keeping the values of F-measure where it had the best
performance.

LAMDA-HAD has the advantage, compared to LAMDA, of
assigning not identified individuals to the NIC  more
accurately, option that the other analyzed algorith not
have (see Figure 5.2). The feature of creatin dapting
classes of LAMDA is preserved. When HA ameter is
computed, there is more certainty in the nment when
there is no significant difference !ﬁgeen the existing
classes and the new data that is,Qeihg entered. This is
achieved because it is being CC}F ed between the GAD
values of the individual and% GAD of each class to
validate the classificati refore, the possibility of
modifying the initial mo temporary changes that could
occur is diminished. dapting the GAD to each class, a
better descriptio @ 'the data representing the class is
obtained, avo@ that an "outlier" or "temporary change"
data drastically#modify the general model described by the
set of clagss.

Fin QEAMDA—HAD presents greater robustness for the
[asSification because HAD decreases the possibility of
creating new classes by mistake. However, in an online
process many very different data arrive that can modify the
number of classes, requiring that the model can adapt to
changes in the process.
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6.2 Clustering Context

LAMDA-RD in all cases considerably improves the
performance of the original algorithm (see the results from
Table 5.6 to Table 5.9).

Based on the results of P., metric that considers SC and
WB-index, it can be noticed that in 4 of the 10 datasets
tested (Dim1024, Hepta, Unbalance and sl1), LA RD
obtains the best results, in terms of performaan\ ile in

Segment (high dimensionality ), R15 and gation, is
close to the best algorithms. In Postures ( hmark with a
large number of samples and high dimengsiomality) is the best
algorithm when compared to other stering methods
focused on data streams, achievin objective of this work
of obtaining a competitive hm that in all cases
improves the performance DA.

datasets with differe rlapping. In cases where there is
no overlap, the al m works as well as KM, KMD and
AHT. Withan @ap of 9% detailed in [150], as in the case
of s1, LAM D presents the best results, while with an
overlap. s than 20% (s2 and al), the algorithm has an
inter @\ate performance. Also, it is noted that the
g:;@g‘nance decays in s3, which has a 40% overlap (strong

-Gaussian distribution of feature values), where it is
complicated to make an online assignment of elements
working in a streaming data scenario, based on distances
and densities.

LAMDA-RD has been géd in balanced and unbalanced

In the context of the data stream scenario, LAMDA-RD,
based on the performance metrics of Table 5.10, is widely
superior to LAMDA-TP and ADDClustering, since the
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proposal has a merging process that allows avoiding the
creation of an excessive number of clusters.

LAMDA-RD reaches the best results comparing with other
well-known clustering algorithms in  benchmarks with
overlap <20% (see in [150]) and unbalanced datasets, such
as: Dim1024, Segment, Unbalance and s1. While increasing
the individuals in the overlap area for instance s2, s3, and
al, the algorithm decreases its performance since it(’&sed
on density measurements. LAMDA-RD can & online
mode with streaming data, however, itis not ate when
the dataset has a large number of individgals? because the
algorithm's  execution time will cqQnéiderably increase.
Aditionally, LAMDA-RD can disco OnEN groups with a low
computational cost. The additi V‘?‘a merging algorithm
awvoids the creation of an exce%)gz)é number of poor quality
clusters, which is demons&agd y the performance metrics
SC, WB;4ex @nd P..
&

The values d,,, aré@t regulate the requirements in the
clusters to be @iged. Specifically, setting D, to a value
close to zero,@ a merging process is made between the
nearby cluglers, but with dissimilar characteristics. In the
other hagel setting D, to a value close to 1, then the merge
is etween nearby and similar clusters.

‘n:k robust distance (RD) related to d,,;, allows improving the
quality of the resulting clusters, since this term penalizes the
dissimilarity between the individuals and the clusters. These
parameters affect the quality of clusters related to the
minimum P, and the final number of clusters created m.
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6.3 Control Systems Context

LSMC can be applied in a class of SISO systems presented
in (4.5). For its implementation, it is required to know an
estimation of the order of the system, which is useful for the
design of the sliding surface. The proposal, as shown, is
capable of controling the non-linear systems presented in
the simulations, in which the dynamics can be considesgd as
partially known due to the changes that its paramg\ may
present as a function of the physical variables | @}ed in the
model (as in the mixing tank), without need for
recalibration since the controller does na\%ﬁade, which
has allowed to validate its robustness.\(z}

The application of LSMC may b f%sible in systems with
MIMO characteristics (similar, ﬁa)»structure to the SISO
presented in this work), inifi ﬁ;\}it would be appropriate to
consider its application in upled MIMO systems in which
it is possible to work '@'mdependent controllers in each of
the variables. For % there are mathematical tools for
decoupling M \systems, such as those based on the
relative gain % y RGA [13]. This method proposes to
compute,&tol’s matrix used to measure the interaction
betwee\¥1e inputs and outputs in a multivariate process
co ~Based on this information, if necessary, the design

ecoupler that allows controlling the n-variables of the
system with n-controllers would make the implementation of
the LSMC method feasible and practical.

The most important limitation in terms of applicability is the
parameterization and calibration of the scaling gains of the
LSMC, which must be analyzed with great attention and
meticulousness in various systems to establish initial
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equations that allow to have a starting point to obtain these
parameters. The formalization of these equations would be
of great help and importance inthe design stage sincein this
work, as mentioned above, it has been heuristically
calibrated with the ISE minimization process, which it might
not be feasible in real processes due to the risk that this
implies in case of having an incorrect initial calibration.

Calibration using PSO increases the calibration timéénce
the algorithm must be run n-iterations to minimy & Yhe ISE.
Similar results have been found when é@heuristic
minimization as shown in Figures 5.9-5.11@ -5.18, which
is a process that can take less time\?r this reason, the
formalization of the Adaptive LAM Igorithm has been
proposed, capable of self-adjustipg\its internal parameters.

Z-numbers based controller Qoduces a less impulsive
response, reaching the r, nce more quickly due to the
fact that in the desi ge the term "U" of reliability is
considered when eé& are large. As seen in Figure 5.22,
the control actio SMC is smoother than the LSMC, this
causes the 0 ot to be minimal, which is a considerable
improveme@\in terms of power consumption.

From alitative point of view, it has been observed that
th ptive LAMDA is capable to control systems better

the other proposals in all case studies. In the mixing
tank with variable dead time system, itis observed that the
algorithm is capable of adapting to changes in the dynamics
of the system produced by the variation of the dead time,
calculating a less aggressive control action that is capable
to take the system to the reference in less time. In the case
of the HVAC system, the two variables T, and W, are
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adequately regulated, even when moisture and temperature
disturbances are added to the system; the control action of
Adaptive LAMDA allows to regulate the system, considering
that the algorithm learns directly from the behavior of the
plant and has not required calibration, which is
indispensable in the non-adaptive methods. Also, it has
been observed that the response of the method is better,
especially with respect to ANFIS. In the robot %@king
trajectory, it is evident that Adaptive LAMDA is better
than ANFIS, it is enough to observe that the cs@nﬁzction of
the LAMDA proposal is less abrupt and o i@ory, which is
an advantage since the actuators mayrng\‘respond to the
control action computed by ANFIS.

The simulations of Adaptive (?have shown that the
proposed method is able to co systems even better than
other intelligent methods. e tase of the mixing tank, the
results have shown th & proposal is better in terms of
performance by 609 non-adaptive methods (LAMDA-
Pl and Fuzzy-PIKQm by 170% over the more similar
approach (A , which maintains steady-state error
without reaghirig the reference (see Table 5.17). Inthe case
of regula@of the HVAC system, it has been possible to
obser&}n excellent performance of Adaptive LAMDA in the
c stage, in the presence of temperature and moisture

rbances, considerably improving performance with
respect to ANFIS, as shown in the related results with the
IAE (see Table 5.16). The proposal presents a smoother and
less oscillatory control action that eliminates the steady-state
error. On the other hand, in the application of trajectory
tracking of the mobile robot, it has been observed that
LAMDA achieves the control objective with excellent
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performance, but the most important characteristic to note is
the shape of the control actions produced by the proposed
method, in which it is clearly observed that the oscillations
decrease considerably with respect to ANFIS, with errorsin
the trajectory of smaller magnitude, that is, better IAE (see
Table 5.18). The three case studies have shown that the
main advantage of the learning-based controllers is that they
do not depend on the mathematical model of the {@nts
which are often complex to obtain and may hav deling

errors. Q)
&
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The main goal of the thesis has been reached: the
formalization of a controller based on the LAMDA fuzzy
model. For this purpose, extensions to improve LAMDA in
classification and clustering tasks have been proposed.

In the case of classification tasks, LAMDA-HAD een
tested in several benchmarks and its resu @ve been
compared with other classifiers like LD » SVM, DT,
among others, showing very similar r%lts for the F-
measure and Accuracy metrics, vvitl\‘%spect to the best
classifiers, being in our experiments DA and RF. Inall tests,
LAMDA-HAD is much better the original LAMDA.
Likewise, it has shown that i the best algorithm when
when the classes are well @ned (their descriptors correctly
characterize each clas uth the advantage that LAMDA-
HAD does not hig§1formation of unbalanced classes
(reducing the mance). LAMDA-HAD is the only
algorithm thattﬁkifferent data characteristics (unbalanced
classes, p\qiapping, etc) obtain competitive results.

In thes e of clustering tasks, an automatic merge
al fgf?w caled LAMDA-RD, has been formalized. This
al&) thm analyses the similarity between neighboring
clusters to decide if the merge process is carried out or not.
It has an additional execution time; however, this problem
compensated with the ability of the algorithm to avoid
creating an excessive number of clusters. This feature is not
possible in LAMDA-TP and in LAMDA. In the comparative
study with them, LAMDA-RD significantly improves the
performance in terms of the metrics SC, WB;, 4. @and RI.
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LAMDA has the characteristic of making intrinsically a split
process, generating new classes when it does not identify
the similarity between the individual and the clusters.
However, the quality of the clusters generated is not similar
to the iterative methods, especially in cases of high
overlapping, which LAMDA-RD corrects presenting better
results in all the benchmarks. In cases when the overlapping
is 0-20%, LAMDA-RD presents results compar as
iterative methods (KM, KMD and FCM), arQ\ s the
overlapping increases its performance decrea ecause it
is more complex to make an assignment e elements
have characteristics of several clusters,inv@nline methods.
The advantage of LAMDA-RD is thaN(bcan discover new
groups with a low computational t. The addition of a
merging algorithm avoids th ation of an excessive
number of poor quality cIus%sQ

In the context of cont stems, a controller based on
LAMDA has been f fzed, adding an inference stage in
order to take the ?em to the desired state through the
calculation of l}ﬁ Ds. By combining LAMDA with the SMC
theory, it hag b&en shown that LSMC is stable and is capable
of contrd@ systems with variable dynamics and model

unce{@ﬂes.

esign of LSMC is simple and requires only two
descriptors: s(t) and its derivative $(t). That information is
sufficient for the computation of continuous and
discontinuous control actions of a sliding mode approach.

In a CSTR process, the results show that LSMC presents a
smoother response than the Pl, SMC, and LAMDA-PID at
the reference changes. In terms of disturbance rejection, it
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has been verified that LSMC is robust enough to reach the
reference in a lower time than the conventional SMC without
an abrupt control action (without damaging the actuator).

In the mixing tank with variable dynamics, LSMC achieves a
better performance against the other tested controllers.
Also, we observe that LSMC regulates the process in short
time, being stable without degrading its performance gs the
PID does. Additionally, the controller reaches the rﬁnce
in the presence of the disturbances, which is whieved
by the conventional SMC.

The LSMC outperforms the results G’Q}LAMDA-PID,
improving the ISE, with a smoother r nse that reaches
the reference in less time, and rg\@eing considerably the
oscillations. Also, LSMC is mo@. robust when there are

disturbances due to its desi ased on the SMC theory,
which considers the L ov stability concepts. It is
observed that LSMC i attering-free scheme, soling a

problem present in @?ﬁional SMC schemes, and avoids the
use of the sign f n that causes this phenomenon.

LAMDA e reliability obtained of the sliding surface to
comp more aggressive control action in presence of
largeetfors and smooth control action when the error is

to zero. The Total Utility improves the performance of
LSMC allowing to reach the reference quickly and smoothly
(reducing the overshoot), with control actions that would not
affect the actuators in a real system since one of its
strengths is being robust and chattering-free.

ZLSMC uses ﬁé cCriteria of restriction given for the MADs of

Adaptive LAMDA has the capability to control systems
without the need to know its exact mathematical model. The
proposed method can be implemented on any system in
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which its inverse model can be identified, and offers a great
advantage over non-adaptive methods as LSMC, Rule-
based LAMDA, and conventional controllers.

Adaptive LAMDA requires a learning stage with a higher
computational cost than to the other methods due to the
optimization algorithms implemented for the self-adjustment
of parameters required for learning the inverse dynarpics of
the plant to be controlled. The Adaptive LAMDA isb with
respect to ANFIS as shown in all the case studie%@senting
a less aggressive response, properly followi e desired
reference or trajectory which leads to elimfhate the error in
steady state. In the robot tracking traj (g}y itis evident that
Adaptive LAMDA is much better t}@n ANFIS, the control
action of our proposal is less abr, nd oscillatory which is
an advantage, since the act s of the robot may not
respond to the oscillatory 829:0 ction computed by ANFIS.

7.2 Future W

As future work, it QOposed to improve the performance of
LAMDA-RD \@ it is tested in strong non-Gaussian
distribution Qf feature values, and address in detail the curse
of diment '%Iity in datasets with a very high number of
featur, .\Also, it is necessary to combine the clustering
al @ m with supervised learning features to implement a
H}irid algorithm  (semi-supervised learning) based on
LAMDA, which can be applied in systems with labeled and
unlabeled data.

For LAMDA-RD is required to improve the algorithm
performance through the computation of the suitable
threshold for each cluster in the merge process, and to
formalize the parameter calibration of the algorithm.
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In the context of control, LAMDA approaches are
competitive and better than classic fuzzy, PID, SMC, and
ANFIS which leads to propose the validation of LAMDA
control in other more complex systems, with dynamics more
challenging to model, as in the case of aerial robots where
the loads are critical. Also, it is necessary to propose a
parameter calibration method to facilitate the tuning of the

scaling gains of the LSMC controller. >
The Adaptive LAMDA is stable as experimen % both
in the learning and in the operation stage, b, oretically,
it must be demonstrated its global stability erties.

Finally, it is proposed to extend ZLSM\%Adaptive LAMDA
approaches, in which the center, *’&F the classes for the
restriction and reliability of (RS Z-numbers can be
automatically computed in opling learning mode, in order to
awvoid the heuristic calibrghigi'that is a time-consuming and
complex process in so ystems with uncertain dynamics.

O
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APPENDIX A: Graphical representation of

the datasets used in classification and

clustering

In this Appendix are shown the two-dimensional graphs of
the datasets using the t-Distributed Stochastic Nejghbor

Embedding,

method used for High-Dimensi%&) Data

reduction (tsne function in Matlab). \Q}
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APPENDIX B: LAMDA-HAD EVALUATION

B.1. Comparison between LAMDA, LAMDA
(Adaptable GADy; ) and LAMDA-HAD in

>

In this Appendix are shown the results of the t of the
algorithms LAMDA, LAMDA with adaptable GA@C, and the
complete LAMDA-HAD method, in orde observe the
contribution of the two extensions n\‘& performance of
classification tasks during the tes(tb e.

===LANMDA —+-ADAPTABLE GADNIC =—a—LAMDA —s— ADAPTABLE GADNIC —s—LAMDA HA|
Accuracy

classification benchmarks

Accuracy
1

Specificity Precisien

Sensitivitg Sensitivity Recall
»\ o
«@ F-Measure F-Measure
Q} Iris Dataset Breast Cancer Dataset
[N,
N
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Figure B.1. Comparison between LAMDA, LAl %daptable

GADy;c) and LAMDA-HAD in classificatio chmarks
Figure A.1 shows that the two proposx&?xtensions improve
the performance of the original thm, reducing the
number of misclassified individ e cases where the
proposal still makes mistak when there is a non-
separability problem due efinition of the data space,
because some descrip, 0 not adequately characterize
the individuals in th ses. The problem of maintaining a
fixed NIC in all cl could be solved by establishing the
GADy;, for e ﬁ%ass. The calculation of HAD reinforces
the assign 3&) individuals to the classes, improving the
measure\@ rformance metrics in all the benchmarks.

9
BQ;K ROC CURVES OF THE TESTED

CLASSIFIERS
In order to diagnose the performance of the algorithms,
Figure B.2 shows the ROC curves of the classifiers for each
of the datasets tested in the classification stage. The ROC

curves can be obtained based on the calculation of the
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micro/macro averages. However, in this work, in order not to

confuse the reader with excess results, and as a

complement to the values shown in Tables 5.2 and 5.3, the
micro average results of the k fold cross-validation are
presented to obtain the curves.
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Figure B.2. Comparison of the micro-average ROC for the
datasets with different classifiers:




The ROC curves in each of the datasets allow a comparative
graphical analysis of the performance of the classifiers,
where we can be observe that RF, LDA and LAMDA-HAD
are the algorithms that present the best results in most data
groups.This characteristic is also reflected in Table B.1,
which shows the AUC values with their respective stz}glard

&

Qs‘@?‘

Table B.1. Average AUC and Standard Deviat% of LAMDA-HAD
and other classification alg@vms

deviation.

LM-
LDA | NN | SVM N%@T RF | LMD HAD

| 9]0,987 [0,936 | 0,980 | g8f¢ | 0,957 | 0,949 | 0,742 | 0,983
S 50,012 [0,001 | 0,005y 0%03 | 0,016 | 0,008 | 0,019 | 0,005
0,958 | 0,966 | 0834 0,965 | 0,935 | 0,974 | 0,481 | 0,945
Breast 216,018 [0,008 /P01 | 0,012 | 0,009 | 0,019 | 0,033 | 0,007
m15 |2 ]0.998 [0.7BLDC.099 [ 0,998 | 0,093 0,996 | 0,087 | 0,998
| 0,001 | @80 [ 0,001 | 0,001 [ 0,001 | 0,001 | 0,005 | 0,001

Wine- | % | 0,994,944 | 0,419 | 0,975 | 0,927 | 0,985 | 0,815 | 0,951
Type | |0,006% 0,011 | 0,055 | 0,008 | 0,016 | 0,006 | 0,022 | 0,009
#.J0541 [ 0,289 | 0,514 | 0,505 | 0,619 | 0,712 | 0,358 | 0,541

Glass 250,051 [ 0,040 | 0,025 | 0,030 | 0,060 | 0,011 | 0,037 | 0,051
Thw 0,974 [0,881 | 0,908 | 0,913 | 0,921 | 0,938 | 0,568 | 0,925
%98 T4 10,008 [0,004 [0,007 [ 0,006 | 0,007 | 0,004 | 0,007 | 0,008
0,328 | 0,317 | 0,288 | 0,370 | 0,361 | 0,323 | 0,217 | 0,361

Ol '5T0,019 [0,018 [ 0,017 | 0,025 | 0,057 | 0,042 | 0,045 | 0,025

— |v|0,324 | 0,303 | 0,131 | 0,263 | 0,321 | 0,366 | 0,228 | 0,310
Wine 15,050 [ 0,012 | 0,032 | 0,039 | 0,030 | 0,009 | 0,030 | 0,071
<» | 2[0.9700.460 0,015 0,675 | 0965 | 0,067 | 0,918 | 0,972
& | 0,005 0,001 [ 0,006 | 0,002 | 0,005 | 0,003 | 0,006 | 0,004

Wire- | % | 0,954 | 0,946 | 0,800 | 0,970 | 0,948 | 0,959 | 0,860 | 0,953
less | 0,006 | 0,005 | 0,002 | 0,003 | 0,004 | 0,001 | 0,004 | 0,002
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APPENDIX C: LAMDA-RD parameter
calibration

In this Appendix, itis presented the LAMDA-RD parameters
calibration, which affect the quality and number of the
formed clusters. These parameters are: d,, (Definition 7)
and D, (Proposition 3). {b

To start with the parameter calibration methodoltgﬁ‘? some
metrics used in clustering are described. KQ‘;

C.1. Metrics for clustering analysis é

Silhouette coefficient (SC): it is a ﬁr{a’c between [-1,1],
-1 for incorrect clustering and 1 f hly dense clustering
(dense and well separated), s around zero indicate
overlapping clusters. This is,composed of two values, ag-(x)
is the mean distance b@n an individual and all other
individuals in the sg@c uster, and by (x) is the mean
distance between dividual and all other individuals in
the nearest clusieknIt the value is bigger, then the clustering
is better. Co ring N, the number of elements of the
dataset, computed as:

2 _ 1N bse00) = a5 ()
*&Q} s¢ N ;x (max(asc(x), by (x))) D

Sum-of-squares within clusters (SSW): it is an internal
measure used to evaluate the cohesion of the clusters that
the algorithm has generated. The smaller the value is, the
better the clustering. Itis defined by (C.2).

C-1



1Oy
sswEm) =2 Y |%-pl €2

k=11ieCy

X! is the i — th individual in the cluster C,, p, is its centroid,
and m is the number of clusters.

Sum-of-squares between clusters (SSB): it is a prototype-
based separation measure used to evaluate the inter-%tster
distance. If the value is bigger, then the clusterin etter.

It is defined by (C.3). é‘\Q}
1 m
SSB(C,m) = n—kz nk{:’b_Qg) (€.3)
k=1

where n,, is the number of eleme (Izr‘the Cluster k, p, is the
mean value of the whole data global center).

WB-index (WBindex)[167§ s based on SSW and SSB. It
emphasizes the effec W multiplying it by the generated

number of cluster . This metric is an alternative to
methods base knee point detection because most
indices sho notonicity with increasing number of

clusters. ¢ refore, indices with a clear minimum or
maximyl Qalue are preferred, being WB,, 4., 0ne of them.
Bei elationship between SSW and SSB, it can be noted

ower its value, the better the quality of the formed
clusters. Incases inwhich itis necessary to know the optimal
number of groups, the WB-index are plotted for different
number of partitions, and the model with the minimum value
is chosen as the optimum. This index is defined in (C.4).

mXx SSW

WBingex = SSB

(.4
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Performance Coefficient (P.): it is a metric that we propose
which is arelationship between SC or SILA and WB-index, in
order to establish which of the tested algorithms presents the
best performance. The value of P, must be minimal and
greater than zero, because WB must be small and SC must
be positive and close to 1, to establish an adequate

clustering.
_ WBindex %
Fe=—"%c— Q7 (€5)

C.2. LAMDA-RD calibration é}\

A guideline for the calibration is presented below, which
shows how the variation of the %ters d,, and D,
(necessary to be set by the user (@ cts the quality of the
clusters for the case of R1, igures B.la shows the
variations of P, dependingsqn the parameters d,,, and D;,
and Figure B.1b shows, i{sS»0p view, in which the different
areas are represente&olors. The yellow zone, e.g. (D, =
0.1, d,,, = 0.27, PaE)I5) presents high P, values, which as
detailed in the $ imental tests, this implies poor quality in
the created cldsters. Based on this, it is necessary to look
for the z ith the minimum P, in this case, the dark blue
zones ch shows the next values: D, = 0.3, d,,;, = 0.03,
P, ¥577), that is, good quality clusters (the lowest P.).

ver, the number of created clusters m must also be
considered, which is represented in Figure B.2a as a
function of the parameters d,, and D,, and Figure B.2b
shows its top view. In this case, the yellow areas represent
a high number of created clusters (D, = 0.9, d,,;, = 0.015,
m = 56 clusters), while dark blue areas (D, =0.1, d,, =
0.27, m = 1 cluster) are not useful because all data has been
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grouped into a single cluster. Finally, we observe the green
zone (D,=03, d,,=0.03, m=15 clusters), which
coincides with the values of d,,;, and D, with the minimum P,
(see Figure. B.1). So, the general idea of the method is to
find a balance between P, and m.

Based on the results of Figure C.1 and C.2, the following
criteria can be established: ‘,&

e Low values of D, make the merging proces, en
neighboring clusters with low or no d&@y in the
overlapped area (see Figure C.3a Quhich is not
adequate since they produce a non; anding or low
exigency algorithm (as is shown ‘l?\p%gure C.2 for dark
blue zones), performing the me rocess with separate
or dissimilar neighboring wj:&rs, which leads to poor
quality clusters, as is sh y high P, in Figure C.1 for
the equivalent zone ( area).

e High values of D uce a more demanding algorithm
(asis shown CIQQ/ in Figure C.2 for yellow zones) since
it requires igher percentage of individuals in the
overlappiQg™area (see in Figure C.3), performing the
mer 30 cess only when the neighboring clusters are
Ve, lose, which improves the quality of them, as is
éwn by low P, in Figure C.1 for the equivalent zone

\A(dark blue area).

e Low values of distance between neighbors d,, allow
obtaining a more demanding algorithm (see Figures C.1
and C.2, the best P, and a non-excessive number of
clusters m is presented with a low d,,), since the
calculation of K, ; is stricter (strongly penalizing the
dissimilarity between samples). High values of d,,
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produce a non-demanding or low exigency algorithm, by
weakening the penalization for the dissimilarity between
samples.

X:0.015

Y:09
2:9.405

X:0.03
Y:03

2:1.577 p
! 4

oz Sl
o ) » 0 005 01 % 02 025 03
(@) é(b)

Figure C.1. Obtained results for R15, in fu}#%n of d,, and D;: (a)
Pc. (b) top view

(b)
FI%@ .2. Obtained results for R15, as function of d,,;, and D:
ber of clusters "m". (b) top view of the number of clusters
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Density in Density in
overlapped area overlapped area

Input feature x;
Input feature x;

Low Dt : Dy > Dy — low Low Dt : Dy, > Dy — high

exigency merge exigency merge
Input feature x; Input feature x;

(@) (b) 2

Figure C.3. lllustrative example of: (a) low value of %) high
value of D, s\
Low values of distance between neig S d,, alow
obtaining a more demanding algorith @e Figures C.1 and
C.2, the best P, and a non-excessivg, number of clusters m
is presented with a low d,,;)), si \z}e calculation of K, ; is
stricter (strongly penalizing e dissimilarity between
samples). High values of produce a non-demanding or
low exigency algorith weakening the penalization for
the dissimilarity be samples.

Figure C.4 sh x\the recommended zone for the initial
parameter calf%'on, looking for a balance zone in Figure
C.1 and@ to obtain a better P., without creating an
excessieMumber of clusters m. Based on this, it is possible
to the quadrants of maximum and minimum exigency,
ansg e balanced zone, which can be taken as a starting
point to perform the search of the most appropriate D, and
dp-
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density threshold Dt

; ; fb-
0 0.15 %
QO

distance between neighbors dp,

Figure C.4. Recommended calibration of nd dp

The critical cases occur in the yellow zo of Figure C.2,
low D, and high d,,, which generate minimum number
of clusters. In the case of R15, the&t results are obtained
by calibrating d,,;, to a small value'aa is shown inFigure C.2,
where we have a great variati@of D,. Now, contrasting the
results with Figure C.1, tgé'maller P, must be located on

the graph. >

From the experi tion, a generic behavior could be
observed, con g that the parameter calibration can
start with g e of D, = 0.5, and d,, = 0.1 X D,, e.g. for
R15 the values are: D, = 0.3, d,,;,, = 0.03 (shaded area
of Fi 4).

Q;@&ample, for s1 dataset the formed clusters with different
parameter values are shown below, inwhich the parameter
D, is initially set D, = 0.54, and d,,;, is changed until finding
the minimum P, looking for an adequate number and quality
of clusters (in this case, 15 clusters). By increasing the value
of d,,;,, the algorithm creates fewer clusters, which are better
constituted by covering the more dispersed individuals. On
the other hand, by setting the value of d,,, fixed, and
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changing the values of D,, we observe that the algorithm is
less strict when it is small, which implies a decrease in the
number of clusters (less strict).

The behavior of P, for the case when D, is fixed and d,,, is
changed, is shown in Figure B.5a, while the behavior of P,
for the case when d,,, is fixed and D, is changed, is shown
in Figure C.5b; in both cases, the minimum P, is a gyide to
calibrate these parameters.
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APPENDIX D: Computational Complexity of
LAMDA-HAD and LAMDA-RD
D.1. Memory Usage

The number of parameters required to perform the
classification/clustering tasks is based on the number of

descriptors and formed classes/clusters, [ m,
respectively. According to The number of gﬁneters
(#parameters) to be stored in memory is:
#parametersy,p = Im + @? (D.1)
#parametersgp —&%n +3 (D.2)

In addition, if there are N sgqples, each with n descriptors,

the total number of store es is:
{Q\y{?}ed_valuesm,) = NI (D.3)
%Q#stored _valuesg, = NI (D.4)
Itisas u@d that each value is stored in 2 bytes of memory
[16 can be concluded that its complexity linearly
ﬁ/\ ses therefore the Big(O) function of LAMDA-HAD and

DA-RD is:

f(ND) = O(ND) (D.5)

D.2. Number of operations

In this subsection is evaluated the number of arithmetic
operations (arithmetic complexity) used to solve a problem.
Addition, subtraction, multiplication, division, power and root
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are considered as basic operations.
operations in each step to assign one sample to a cluster is
detailed in Table D.1[107]. Note that the symbol -- indicates
that the algorithm does not perform that operation.

Table D.1. Arithmetic complexity (number of operations) of
LAMDA, LAMDA-HAD and LAMDA-RD

The number

of

Arithmetic Complexity

update pnew,j

LAMDA LAMDA- LAMDA%,
HAD i
L\
For
normalization 3 3 s\%\?’
\ {23
For MAD, 4ml 4ml N
For update p, ; 4 \(é 4
For CMAD - (b 3ml
‘\ -0
For d, & -- N ml—-1)+2
kX m(é'
For K, % - \e - 3m
For RMAD,, ;, - 6 4 - m
For GAD, ) QA0 | A+ DT | g16m+ 10— 1)
For MGAD, (\V.- ne + 1 -
For GADy,c <>‘_( - m+1 -
For AD, - 5m? -
G,A"/\Q "
For H,}L'z‘}\) - m -
ClasSiCHister 1 2 1
i
FOT tpp,; - - nnZ, —n, + 1)
Count
individuals ~in - - My + My +1
overlapping
For Dy_pp - - 3
In the case of
merge, to - - e + 1y, +1
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The arithmetic complexity of LAMDA in the classification
context (C,.), compared with LAMDA-HAD (C,p) is
computed adding the cells in each column of the Table D.1
and multiplying for the number of data instances N.

C.c = N(25ml — 21m + 211 — 13)
- f(Nml) = 0(Nml) &.6)
Chap = N(5m? + 25ml — 20m + 211 +n,, — AP
- ) = o) «@° @.7)
The comparative results in asymptotic nowg{Big—O) of the
1

algorithms tested in the classification Xt (training) are
presented in Table D.2. \
Table D.2. Arithmetic complexity in ﬁqﬁ&af Big-O of classification
algorigj‘z\
Algorithm Arithg% mplexity big-O Notation
LDA )
- _{?;) 0(1\/13 )
P ON?)
NBC N\ O0(ND)
bt A‘O O(Nllog(n))
RO 0(MNllog(n))
N
R* 0(Nml)
\{AMDAHAD 2
) A 0(Nm?)

*M is the number of trees, information taken from [168,169]

In the other hand, the arithmetic complexity of LAMDA in the

clustering context (C,;), compared with LAMDA-RD (Cgp) is
computed adding the cells in each column of the Table D.1.

Coy = 25ml — 21m + 211 — 13
- f(ml) = 0(ml) (D.8)
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Crp = 25ml — 18m+1(n2, —n,, +22) + 2(n,, +n,) —7
- f(ln2,)=0(n2,), ifn,,~N=> O(N?) (D.9)
The comparative results in asymptotic notation (Big-O) of the

algorithms tested in the clustering context are presented in
Table D.3.

Table D.3. Arithmetic complexity in terms of Big-O of clustering

algorithms
Algorithm Arithmetic Complexity big-O Not?}i\%‘/

KM O(Nkl) &Q}\‘
KMD O(N?1t) ?\Q‘\
FCM e

Wk
ATH 0&/}3”
DBS ,gn(fvl)
LAMDA Q"O (ml)
LAMDA-RD ’,{x}' 0(N?0)

RS

*k is the number of cluster 0’ the number of iterations, information taken
from [170,171] o

S

R
{(}Q

N

QQ;
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APPENDIX E: Demonstration of the stability

of the learning algorithm

This section shows in detail the stability analysis of the
Adaptive-LAMDA method, specifically in the part of learning
during its application in the control loop. For this we have
raised the Theorem 2, whose proof is detailed as foIIq&.

Theorem 2. Consider the learning algorithm pr{é%ted in
Subsection 4.3.1, with the output error define

E (k) = % [Outd(k) — Outf(k)g Moe(? (ED)

the Lyapunov function defined as: (b,
V (k) 2¥, (k) (E.2)

and: é(bQ

3(NY+N4,+N ) (E-3)
For e,.(k) > 0: <$\
0<pB<
2e (k)
(E.4)
&% AY(k -1+ a%};fl(k)) APk — 1)+ (%%k—)) Aa(k — 1))
2e(k
0<tr(P(k+1))< (0 (E.5)

3e, (k) (llalk + D|F)?
For e.(k) <0:

0<p<
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—2e(k)

a0ut (k) \" 30utd (1)

3 <(6gl;t§((k))7 AYGe—1) + (W) APk — 1) + (W) Aalk — 1))

—2e(k)
3e,(K)(|latk + DI)?

0< tr(P(k+1)< (E.7)

Then, the error e(k) — 0 in the training staggg ra
controllable system independent of the appllcag\ ystem
order, number of inputs and classes.

Proof. To demonstrate the convergence ol%e algorithm,
the Lyapunov's theory is used. Then, @hange of V (k)
defined in (E.2) is computed as:

AV =V(k+1) — V(Q%@ﬁsd (k+1) —E,(k)
1
=_ (e(k + 1&%6 k)?)
=—(@ )—e(k))(e(k+ 1)+ e(k))
%Qe(k)(Ae(k) +2e(k)) (E.8)

Grouplng@\e terms of the antecedent in vector form Y (k)
for th ters and ¥ (k) for the standard deviation of the

i Y(k) = [py,1 (), ..., P1,j (K, s P21 (K), ..., P2,j k), ...,
Pies (KD, ooy P j (), wvvy Py (DT (E.9)

Y(k) = [01,(k), ...,00(K), ..., 051 (K), ..., 03 ; (KD, ..,
01 (), e, 03 j (), e, Oy (RD]T (E. 10)

and the consequent parameters in the matrix h(k), from
(4.53):
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hy e hy hy, hy

h(k):lhk1 v Ry Ry hk] (E.11)
S SR S

The change in error Ae(k) can be approximated by:

T T
Ae(k) = (ae(k)> AY (k) + (ae(k)> AP (k)

Y (k) v (k)
de(k)
(L () m;q‘%m
Updating the centers by the gradient desc thod
0E, (k)
Y(k+1) =Yk +1 <_W) 2

k)—Y(k—1)) (E.13)
OE,(k) 0E,(k) de(k) Quigio
v (k) de(k) aomg(/@%‘lf(k)

e 90utd (k)

The change o ), replacing (E.14) in (E.13), is:
o0uti (k)
S&@g the same procedure of (E.13)-( E.15) for ¥ (k) and
t

it is obtained:

d

AP (K) = ne(k) 63;7’:&()") FRMY(—1)  (E.16)
d

Aa (k) = ne(k) 6061;;&()16) + BAa(k — 1) (E.17)

Rewriting (4.53) to compute the consequent parameters
h(k + 1):
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h(k+1) = h(k) + P(k+ Dalk + De, (k) (E.18)

with:
e, (k) = Out(k + 1) —a"(k + 1)h(k) (E.19)
From (E.18), the change of h(k) is computed by:
Ah(k) = P(k+ Da(k + De,.(k) (E.20)

Thus, the estimated output of LAMDA for the d —th sample
from (4.53) is:

Out(k + 1) = a’(k + Dh(k) Q’:\\ (E.21)
From (E.1) and (E.21), the derivative is: é;\
ae(k) de(k) doutf(k)
R0 ~ d0uti() oR() N& KD (B22)
Replacing (E.15)-( E.17) and (E ‘%@T(E 12), Ae(k) is

computed as:

T,

[ d0utf(\ XD d0utd (k)
Ae(k)—(——ay(k) dOE +ﬁAY(k—1)>
a0utd( d0utf (k)
( (e(k) O +3Asv(k—1)>

utf(k) o0utf(k)
é 9200 < e(k) ————— 3200 + BAa(k — 1))
—aT(k+ D)P(k+ Da(k + e, (k) (E.23)

Ae(k) =

a0utd (k aoutd(k)\"
—ne(k)(ﬂ%kg)nz) - (%) BAY (kc—1)

a0utd (k a0ut?(k)\"
1ot (12280 ) (0
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aoutd(k)\® [a0utl(k
—ne(k) (—%f(kg )> - (—%f(kg ))ﬁAa(k -1

—aT(k+ )Pk + Dalk + Ve (k) (E.24)

Now, the following norms are replaced with the terms
Ny, Ny, Ny:

a0utd (k) a0ut (k)
(”T(k)”2> (|| F0) ”2%‘&

Q>
N =<60L’L}(k)> é&@ (E.25)

a

da (k)
Replacing (E.25) in (E.24):

aout?(k
ne(k) = —ne(ONy, — a;t{kg )% (k

e Ny — %‘L%) B (i — 1)

Orooutd (k)
3200 )BAa(k -1)

{b’Q—aT(k + DP(k+ Dalk + De, (k) (E.26)

—ne(k)

. aoutd(k)\"

Ae(k{@\oe(k) nNy+< Oal;t{kg )> efk) AY (k= 1) + 7Ny
“‘lQ} 20ut (i)' AP(k—1) + 1N

+< () ) oG MU= D)+ e

aoutt(k)\ B
+< 5a(h) ) P R
e.(k)
+a o) (E.27)

Replacing (E.27) in AV (k) presented in (E.8):
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n(Ny + Ny + N,)

d T
L P ((aoutL(k)> AY (k — 1)

AV (k) = %ez(k)

e(k) aY (k)

<aOutg F)\"

+ <—60”tg (k)> Ak —1) Q'(\

da(k)

+aT(k+ 1Pk +\S>(k L&k
{?f e(k)
Q%
n(Ny + Ny + N,) 8&.

T
T

*’2} r
03\0 ()
\ a0utf(k)
e (k)
+a )
- 2] (E.28)

From (E.28), the following equalities are considered:
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A(k) =n(Ny + Ny +N,) (E.29)

T
B =L ((60“tg(k)> AY(k — 1)

e(k) oY (k)

d T
(2 i

d0utf (k)
¥ ( 9a(k) )A“(k B 1)> *\9&30)
o

C(k) = a"(k + DP(k + Dalk + 1)%\ (E.31)

Replacing (E.29)-(E.31) in (E.28 \% guarantee the
convergence and stability, AV(k) meet the condition:

AV(K) <0 == eZ(k) [A(k) %:)+C(k) [Ak) + B(k)

+ C(kb(é] <0

=>o<\<o§Q+B(k)+C(k) <2 (E.32)

A is always positi\é,:}vhile the signs of B(k) and C(k) must
be evaluated eet the condition presented in (E.32), if
B(k) > 0:

tg(k) a0ut? (k)\"
\&& ALY Y A s

+ <L”tf (")> Bak - 1)) >0 (£33)

da(k)

Because P(k + 1)is Hermitanian semidefinite positive [133],
then:

e, (k)
e(k)

>0 = C(k) >0 (E.34)
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For stability, it is sufficient to consider the same weights for
all the terms in (E.32):

2 2 2
0<AM) <3 0<B() <3;0<C)<3  (E.35

From (E.29), (E.33)-(E.35), it is obtained:

2
0<n <3N, +N, *N) ;g%)
0<p< ’\(9
2e (k) (‘Q}\ (E.37)

- ; N\
3<(a<;1;ti(k)) vl 1 + (22249) sy azti(k))Aa(k—1)>

LG

0<al(k+ DP(k+ Dalk + (E.38)
(&& (k)
Considering the property: X YAQ: tr(YX TX), and applying
itin (E.38): >
0<al(k+ 1Pk + 1) 1) =
er( R\Q)a(k +Da’(k+ 1) < 0 (E.39)
<§ o
Applying the p% rty W,Z € H{ (n), then
0<trW tr WtrZ,in (E.39):
2e(k)
\l@< tr(P(k + 1) tr(alk + Da’ (k + 1)) <3
2e(k)
0 < tr(P(k+ D) (llatk + D||)? < 0]
0<tr(Plk+ 1)< 2e (k) (E.40)

3e,. (k) (lalk + D)||)?
Now, if B(k) < 0:
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0 < —B(k) <§ (E.41)

0<p<
—2e(k) (E.42)
(aomd(k))T G—1) (BOutd(k) )T (o) s (QEDY,
3 W&a— AYk—1+W APk — 1 +(W)Aak—1
From (E.35), if C(k) <0: {b'
e, (k)

“0 <0 &@Q{bw 43)

0<—C(k) <— é@ (E.44)

Considering the same procedure f& (E.39)-(E.40), in
(E.44), it is obtained: (b’

(k) 2

k) 3

)

2 elk
0>—-al(k @(k +Dalk+1) > 3e.(0

(k)
0<al(k ;b@(k +Dak+1) < — 3e.(0

{\ —2e(k)
é\@tr(ﬂk + 1) < 3. @ latk + DI,
QQ}

0 < —a(k+ DP(+RQ
4

(E.45)
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ORDEN DE EMPASTADO
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