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RESUMEN

Debido a la naturaleza de transmisión en el medio inalámbrico, los problemas de privacidad y se-

guridad de la información son aspectos críticos, comúnmente abordados en todas las generaciones

de comunicaciones móviles. Recientemente, partiendo de las bases de Teoría de Información, la

seguridad a nivel de capa física se ha convertido en un enfoque prometedor para brindar seguridad

en redes emergentes (5G y post-5G). Dicha tecnología toma ventaja de la aleatoriedad inherente del

canal inalámbrico (por ejemplo, ruido, interferencia, y desvanecimiento) para resguardar los datos

de nodos no autorizados. Hoy en día, varios investigadores, han dedicado un esfuerzo considerable

para comprender las bases fundamentales de la seguridad a nivel de la capa física sobre diferentes

modelos de desvanecimientos en escenarios sujetos a espionaje. En este contexto, es importante

destacar que, adecuados modelos de canal de desvanecimiento pueden capturar de forma precisa

las propiedades intrínsecas del medio inalámbrico. Varios trabajos propuestos en la literatura con-

cernientes al estudio de la seguridad a nivel de capa física sobre canales de desvanecimiento, se

basan principalmente en modelos simplistas. Es decir, dichos modelos de canal no capturan la ver-

satilidad del medio de propagación a corta escala que formarán parte del entorno 5G y post-5G.

Por lo que, estudiar y comprender los beneficios de la seguridad a nivel de capa física sobre mode-

los de canal de desvanecimientos es de primordial importancia para el diseño e implementación de

aplicaciones seguras en la próxima red móvil de comunicación.

Esta tesis tiene como objetivo proporcionar un estudio integral del desempeño de la seguridad a

nivel de capa física sobre modelos de canales de desvanecimiento generalizados. Cabe mencionar

que, se considerará aquellos modelos de desvanecimiento que han demostrado caracterizar con

precisión el canal inalámbrico en las comunicaciones que emplean ondas milimétricas (mm-Wave,

del inglés millimeter-Wave). En particular, este trabajo se enfoca en investigar el desempeño de

la seguridad a nivel de capa física en canales de escuchas para sistemas con una única antena

(SISO, del inglés Single-Input Single-Output) y múltiples antenas (MIMO, del inglés Multiple-Input

Multiple-Output). Para tal propósito, se utilizarán métricas relativas a la seguridad ampliamente

utilizadas en la literatura, entre las cuales, podemos destacar, la probabilidad de corte del secreto

de la comunicación (SOP, del inglés Secrecy Outage Probability), y la tasa alcanzable de secreto

promedio (ASC, del inglés Average Secrecy Capacity). Además, partiendo del hecho de que: (i)

el SOP pude ser interpretado como el cociente de dos variables aleatorias, y (ii) las técnicas de

combinación de diversidad (por ejemplo, MIMO) implican la suma de variables aleatorias. Este

trabajo también propone nuevas metologías para aproximar la distribución exacta de las principales

estadísticas (por ejemplo, Función Densidad de Probabilidad y Función de Distribución Acumulativa)

de la suma y el cociente de variables aleatorias. Con base a estos resultados, posteriormente
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se proporcionan formulaciones de métricas relativas de secreto para explorar el desempeño de la

seguridad a nivel de capa física de los sistemas propuestos (es decir, canales de escucha SISO

y MIMO). Los modelos de canal de desvanecimiento considerados para los escenarios propuestos

son κ-µ shadowed y N-Rayos con Potencia Difusa.

Finalmente, inspirados por el potencial prometedor de las comunicaciones inalámbricas asistidas

por superficie inteligente reconfigurable (RIS, del inglés Intelligent Reflecting Surface) para redes

posteriores a 5G; este trabajo explora la seguridad de la capa física de un sistema inalámbrico que

emplea tecnología RIS. Los resultados muestran que la incorporación de la configuración RIS en las

redes inalámbricas post-5G aporta una mejora significante al desempeño de la seguridad a nivel de

capa física.

Keywords— Métodos de aproximación, suma de variables aleatorias, radio de variables aleatorias,

canales de desvanecimiento generalizado, κ-µ shadowed, N-Rayos con Potencia Difusa, seguridad

en capa física, superficies inteligentes reconfigurables.
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ABSTRACT

Due to the wireless medium’s broadcast nature, privacy and security concerns are critical issues in

wireless communications systems. Rooted in information theory, physical layer security by exploiting

the inherent randomness (e.g., noise, interference, and fading) of the wireless channel has become a

promising approach to providing security in future wireless networks. Nowadays, many researchers

have devoted a considerable effort to understand the fundamental basis of physical layer security over

different fading wire-tap channel models. Importantly, proper fading channel models can capture the

time-varying properties of the wireless environment. Works available in the literature on the study

of the physical layer security over fading channels are primarily based on fading models that do

not capture the irregularity and heterogeneity of the versatile set of channels that will be part of 5G

and post-5G networks. Therefore, understanding physical layer security’s performance undergoing

more practical fading channel models is of great importance for practical security applications at the

physical layer level for the next wireless networks.

This thesis aims to provide a comprehensive study on physical layer security’s fundamental perfor-

mance over generalized fading channel models, which have proven to characterize mm-Wave sce-

narios in 5G accurately. Specifically, this investigation focuses on the secrecy performance of both

the Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) wiretap channels

by employing the Secrecy Outage Probability (SOP), Average Secrecy Capacity (ASC) as secrecy

metrics. Knowing that: (i) the SOP can be interpreted as the ratio of two random variables, and

(ii) the diversity combining techniques used in MIMO systems implies a sum of Random Variables

(RVs), analytical approximations for statistics (e.g., PDF and CDF) of both the sum and the ratio of

the random variables are derived in the first instance. Based on these results, the secrecy formula-

tions to investigate the secrecy performance of the concerned systems (i.e., SISO and MIMO wiretap

channels) over generalized fading channels, namely, κ-µ shadowed, and N-Wave with Diffuse Power

are derived. Finally, inspired by the promising potential of Reconfigurable Intelligent Surface (RIS)-

aided communications for post-5G networks, a wireless system’s physical layer security employing

RIS technology is also explored. The results show that incorporating RIS configuration in wireless

networks brings a prominent physical layer security enhancement.

Keywords— Approximation methods, sum of random variables, ratio of random variables, general-

ized fading channels, κ-µ shadowed, N-wave with Diffuse Power fading model, physical layer security,

reconfigurable intelligent surfaces.
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1 INTRODUCTION

In wireless communications, a large number of factors directly affect the quality of the received sig-

nal. Signal strength fluctuates frequently, sometimes providing a good quality signal, sometimes

degrading the signal. Some of the physical phenomena that influence the wireless channel include

interference, path loss, shadowing, fading, among others [1]. Specifically, fading is caused due to

multipath propagation, i.e., the interaction of multiple reflections, scattering, and diffractions of the

radio-mobile signal along its pathway. Due to the stochastic nature of the physical factors involved

in the fading, it is necessary to characterize it through probability distributions such as Rayleigh,

Rice, Hoyt, Weibull, and Nakagami-m. Fading imposes severe performance limitations on wireless

communications systems [2]. Therefore, diversity combination methods are used as efficient tech-

niques to combat the fading. The basic principle of these methods is to provide the receiver with

multiple replicates of the information signal, called diversity signals or branches, which, when prop-

erly combined, provide a less fading resulting signal. Classic diversity combining techniques are

Equal Gain Combining (EGC) and Maximum Ratio Combining (MRC) [3]. Such diversity combining

schemes are the most relevant instances that imply sums of Random Variables (RVs). Other impor-

tant applications of the sum of fading RVs include, for instance, outage probability, signal detection,

inter-symbol interference, phase jitter, linear equalizers, and error-bound calculations for coding in

satellite communications [4], [5]. Unfortunately, the exact analytical evaluation of the sum statistics

(i.e., Probability Density Function (PDF), Cumulative Density Function (CDF), and Moment Gener-

ation Function (MGF)) may be cumbersome even for statistically independent, well-known fading

channel models. For independent RVs, the PDF of the sum can be computed either as the convo-

lution of the individual PDFs of the summands or as the Fourier Transform (FT) of the product of

the corresponding Characteristic Functions (CFs) [6]. Although tractable solutions are available for

particular fading models and specific numbers of summands, no general closed-form solution exists

as yet for an arbitrary number of summands over generalized fading channels. In such cases, one

needs to resort to numerical routines by using popular mathematical software packages. However,

as the number of summands increases, this approach becomes prone to convergence and instability

issues, or even impracticable. To bypass the stated limitation on exact sum statistics, approximate

methods for many fading scenarios have emerged in the literature. In this sense, a better knowledge

of the statistics of the sum of fading RVs plays a pivotal role in the analytical performance evaluation

of many wireless applications.
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Nowadays, with the advent of new applications (e.g., autonomous cars, remote surgery, Internet of

Thing (IoT), cloud computing, among others), the capacity of the fourth generation (4G) systems will

not be able to support the demanding bandwidths and high service quality requirements [7]. In this

context, Fifth Generation (5G) technology emerges as a solution to almost everything. Specifically,

5G is supposed to offer enormous data speeds, extreme reliability, and supporting a massive num-

ber of things or devices connected for the next decade [8]. The key to the successful development

of 5G systems will be the unification of different networking technologies. For instance, some of new

scenarios of wireless systems under the umbrella of 5G include millimeter Wave (mm-Wave) com-

munications, Device-to-Device (D2D) systems, machine-type networks, vehicular communications,

Unmanned Aerial Vehicle (UAV) communications, and many others [9]. These novel scenarios will

create the necessity for wireless nodes to operate over a versatile set of channels ranging from (i)

indoor to outdoor; (ii) Line-of-Sight (LoS) to Non-LoS (NLoS), and (iii) homogeneous diffuse scat-

tering to scenarios with clustering of scattered multipath waves [10]. Recent investigations in [11]

have shown that none of the well-established fading models (e.g., Rayleigh, Rician, and Nakagami-

m) present an accurate fit with the field measurements in mm-Wave communications. One of the

reasons for such mismatch is based on the fact that classical fading models heavily rely on the Cen-

tral Limit Theorem (CLT), which assumes a sufficiently large number of multipath waves arriving at

the receiver ends – and such conditions are not always met [12]. In the last years, some efforts have

been oriented to formulate more accurate channel models that overcome such limitations. One good

example is the α-η-κ-µ fading model [13], which has shown good accuracy to model the short-term

fading channel behavior in the mm-Wave band [14]. Another choice are stochastic fading models that

explicitly discern between the individual multipath waves classically regarded as LoS components.

Such models have been proposed as a way for bridging the gap between CLT-based approaches and

purely ray-based models, and may be suited to accommodate to propagation conditions encountered

in the mm-Wave band like those emulated by ray-tracing schemes [15], [16]. For instance, Durgin’s

Two-Wave with Diffuse Power (TWDP) [17] and the Fluctuating Two-Ray (FTR) [18] are known to

improve the fit to field measurements in different scenarios, including mm-Wave set-ups [11], [19],

compared to conventional fading channel models. Very recently, the author in [20] proposed the

generalization o TWDP that was referred to as N-wave with diffuse power (NWDP) in order to deal

with the rather unwieldy nature of the wireless channel for the next networks. In this context, an-

other popular model to characterize the propagation medium in emerging practical scenarios is the

κ-µ shadowed [21], which relies on the assumption that the signal’s dominant components are sub-

ject to random fluctuations. Nonetheless, a myriad of challenges must still be overcome so that 5G

converges into a reliable, safe, and efficient system. One of the most critical aspects is related to

information transmission security, given that 5G is designed to support diverse applications. Con-

sequently, highly confidential and vulnerable data is expected to be transmitted in 5G and beyond

networks, which are sensitive to eavesdropping due to their wireless nature. Traditionally, security

systems are based on higher layer cryptographic mechanisms, which contemplate mathematically
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complex algorithms that demand high energy and computational resources. Such methods pose sig-

nificant challenges for implementing and managing the 5G wireless networks in practice [22]. There-

fore, classical cryptography by itself does not constitute an integral solution to the security problems

envisioned for future wireless transmissions. In this sense, Physical Layer Security (PLS) arises

as an alternative to providing secure communications at the physical layer by smartly exploiting the

randomness (e.g., noise, interference, and fading) of wireless channels [23]. The main advantage

of employing PLS for 5G networks compared to cryptography methods is that PLS techniques do

not rely on computational complexity. Hence, even if the unauthorized devices in 5G systems are

equipped with high power computational resources, secure and reliable communications can still be

attained [24]. However, since 5G is a multi-level system with different security levels, using PLS

techniques in this complicated environment is challenging. In this regard, the PLS approach should

interact with other protocol stack techniques to reach a fair tradeoff between security and Quality of

Service (QoS) [25]. PLS’s works over wireless fading channels have been extensively investigated in

the literature. The vast majority in such studies assume fading channel models that do not adequately

characterize the environments in which 5G will be deployed. Therefore, providing useful insights into

PLS’s performance over generalized fading channel models remains challenging.

By the end of the next decade, future mobile applications will demand stricter technical requirements

than those designed to coexist on the 5G platform. Based on this fact, several researchers anticipate

exploring what Sixth Generation (6G) would look like in the future communication era [26]. With great

certainty, it is expected that 6G will improve 5G in terms of speed, reliability, and availability [27].

While 5G takes us into the IoT to transform the way we communicate; 6G is believed to open the new

era of “Internet of Intelligence" with connected people, connected things, and connected intelligence,

helping to improve the world we inhabit [27]. Hence, academic 6G research is in search of technolo-

gies that greatly enhance what is offered by 5G. For instance, most researchers have addressed their

efforts in technologies at the physical and architectural levels [28]. In this context, novel candidate

physical layer technologies for 6G have emerged, such as User-centric cell-free Massive MIMO [29],

[30], Holographic Radio MIMO [31], [32], and Reconfigurable Intelligent Surface (RIS) [33]. Specif-

ically, RIS arises as an unconventional wireless technology paradigm that can intentionally control

the reflection, scattering, and refraction characteristics of electromagnetic waves, i.e., controlling the

wireless propagation medium. A typical RIS-based transmission consists of a large number of low-

cost, passive elements on an RIS that reflect the arrived signals with an adjustable phase shift in

order to increase the achievable rate at the desired receiver [34]. These unique RIS features can

enhance incredibly security at the physical layer level for the next wireless networks. Therefore, a

PLS study of RIS technology is definitely essential in the state-of-the-art.
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1.1 RELATED WORK AND MOTIVATION

This section surveys several works concerning (i) PLS over fading channel models; (ii) sum of RVs;

(iii) ratio of two generalized RVs, and (iv) secure wireless communications via RIS, that have been

investigated and widely discussed in the literature.

1.1.1 Sum of Random Variables

In the literature, a plethora of work has been done for approximating the statistics (i.e., PDF and CDF)

of the sum of RVs. The famous Nakagami in [35] proposed to approximate the sum of an arbitrary

number of independent, identically distributed (i.i.d.) Nakagami-m RVs by using another Nakagami-

m RV. Based on the results given in [35], the parameters of the approximate Nakagami-m distribution

for the sum of two identical and correlated Nakagami-m RVs were obtained in [36]. Authors of [37]

presented a finite range multifold integral for PDF of the sum of i.i.d. Nakagami-m RVs, however,

its performance in computational terms is as intense as the exact solution. An interesting approach

for the evaluation of the CDF via Hermite numerical integration of the weighted sum of M indepen-

dent Rician and Nakagami-m envelopes with or without the presence of additive White Gaussian

noise (AWGN) was presented in [38]. Then, a closed-form expression for the PDF, CDF, and MGF

of M Nakagami-m vectors with uniform phases and a restricted m to integers was derived in [39].

Exact infinite summations of hypergeometric functions and gamma for the distribution of the sum of

i.i.d. Nakagami-m RVs was shown in [40], although their computation becomes intractable while the

number of RVs increases. Aiming to evaluate the error-rate performance of EGC, an efficient approx-

imation to the sum of correlated Nakagami-m RVs with identical, integer-valued m-fading parameters

was presented in [41]. In [42], a Gaussian complementary CDF was considered to approximate the

sum of Rice RVs. In [43] and [44], closed-form approximations to the PDF of the sum of Rayleigh and

Rice RVs were derived, based on a small-argument approximation and the modification of the sum

distribution of squared Rice RVs, respectively. In [45]–[47], approximations to the sum of uncorre-

lated Weibull RVs were proposed to assess the performance of EGC, MRC, and Selection Combining

(SC) systems. Several approximations based on the Moment Matching Method (MoM) are available

in the literature. In the MoM, the approximate sum distribution parameters are calibrated by matching

certain moments of the approximate model to those of the exact sum distribution. For instance, an

improved approximation for the PDF of the sum of arbitrary number of independent but not identically

distributed (i.n.i.d.) Nakagami-m RVs was derived in [48], [49]. Also via MoM, good approximations

were obtained for sums of Weibull [50], Rice [51], Hoyt (Nakagami-q) [52], α-µ [53], and generalized

RVs [54]. Very recently, approximations for sums of Malaga and Fisher RVs were proposed in [55]

and [56], respectively.
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1.1.2 Ratio of Random Variables

Important applications, such as Cognitive Radio (CR), Full-Duplex (FD) relaying, and PLS, are ob-

tained by the ratio of RVs. However, the statistics of the ratio of RVs has been little explored in

the literature. Next, the most outstanding works on the ratio of two RVs are reviewed. Approaches

concerning the statistics of the ratio between RVs with well-known distributions such as Gamma,

Exponential, Weibull, Normal, and the most recent FTR model were presented in [57]–[61], where

some application uses were also provided. Regarding generalized distributions, the statistics of the

ratio of independent and arbitrary squared α-µ RVs, via series representation, was proposed in [62].

Notwithstanding, in that work, the convergence of the power series was attained by making an strong

assumption, more specifically: the values related to the non-linearity of the environment (i.e., to the

α parameter, also referred as shape parameter) of each α-µ RV involved in the quotient must be

co-prime integers. This fact hinders a more comprehensive insight into the performance analysis of

different wireless communication systems. Furthermore, under the same constraint as in [62], the

work in [63] provides closed-form expressions for the statistics of the ratio of products of an arbi-

trary number of independent and non-identically distributed α-µ variates. Recently, the ratio of two

generalized RVs was proposed in [64].

1.1.3 Physical layer security over fading channel models

The famous Shannon introduced the first PLS notions from an information-theoretical perspective in

his seminal work in [65]. Later, the well-known wiretap channel was proposed by Wyner in [66]. In

such a work, Wyner showed that information could be safely transmitted when the wiretap channel

is a degraded version (much noisier) of the legitimate link. Subsequently, Wyner’s results were ex-

tended for the broadcast channel in [67] and for the Gaussian channel in [68]. In the latter work, the

secrecy capacity was defined as the difference between the capabilities of the legitimate channel and

the wiretap channel. Hence, secure wireless transmissions are possible if and only if the main chan-

nel’s quality is better than that of the eavesdropper channel. In the last years, works in [67] and [68]

have inspired an important amount of recent research activities to explore PLS over different fading

channel models. For instance, the first works on PLS performance for conventional Rayleigh fading

with SISO-single eavesdropper (also known as SISO-SE channels) were studied in [69], [70]. Next,

the probability of strictly positive secrecy capacity (SPSC) was explored for independent log-normal

fading channels by assuming single eavesdropper with single antenna devices. SPSC formulations

for Rician and Weibull SISO-SE fading channels were investigated in [71] and [72], respectively. The

SOP behavior under Nakagami-m SISO-SE channels was reported in [73]. Subsequently, the se-

crecy performance by assuming mixed fading channels for the legitimate/eavesdropper paths was

derived for Rician/Rayleigh [74], and Rician/Nagami-m [75]. From a PLS perspective, secure wire-

less communications over generalized SISO-SE fading channels have been widely investigated for
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α-µ [76]–[78] , Fluctuating Beckmann [79], Generalized-K [80], Fisher-Snedecor F [81], κ-µ [82],

α-κ-µ, α-η-µ [83], α-η-κ-µ [84] models. For the specific case of ray-based fading channels, which

accommodate very well to propagation conditions encountered in the mm-Wave, few results are

available in the literature. In particular, only two specular components (i.e., TWDP and FTR models)

were considered for the secrecy performance analysis in [85], [86]. Very recently, in [87], the authors

studied the effect on PLS when considering a finite number of scattering waves in the NWDP fading

channel model. However, an exhaustive PLS study that considers (i) an arbitrary number of domi-

nant specular components and (ii) sufficiently large diffuse propagating waves for the NWDP model

is an appealing research topic in the state-of-the-art.

MIMO wireless systems are conceived to increase reliability or to achieve high data rates. From a se-

crecy point of view, MIMO set-ups allow enhancing PLS performance by exploiting the multi-antenna

diversity at the legitimate nodes. In this context, PLS has gained considerable attention for MIMO

wiretap channels in the last years. Key concepts concerning the generalization of the wiretap chan-

nels to MIMO systems were investigated in [88], [89]. These pioneering works have motivated various

research efforts to improve the secrecy performance in different MIMO topologies. For instance, the

utilization of artificial noise (AN) has been proposed to enhance the secrecy performance of MIMO

networks [90]. Moreover, the impact of cooperative communications on the secrecy capacity of MIMO

wiretap systems were studied in [91], [92]. In [93], the authors focused on the secrecy performance of

cognitive MIMO relaying networks. In order to achieve higher secrecy capacities, different beamform-

ing schemes were considered in [94]–[96]. Nevertheless, beamforming-based methods require as

many radio-frequency (RF) chains as antenna ports, as well as the use of advanced signal process-

ing algorithms to accurately estimate the channel state information (CSI). These approaches require

a high computational demand, which may be infeasible for resource-constrained devices. Alterna-

tively, as optimal antenna selection at the transmitter side only requires a single RF chain compared

to classical beamforming schemes [97], Transmit Antenna Selection (TAS) has been adopted to en-

hance secrecy performance at low-cost and complexity. Therefore, several works have focused on

the advantages of TAS in the context of PLS [23], [98]. In those works, PLS metrics were investi-

gated in the combined use of TAS and maximal ratio combining (MRC) receivers affected by Rayleigh

and Nakagami-m fading, respectively. Recently, the secrecy performance in MIMO wiretap channels

has been analyzed over generalized fading conditions (i.e., α-µ [99] and η-µ [100] fading models).

However, the fading channels considered in the works mentioned above are sometimes inaccurate

to characterize the propagation medium in emerging practical scenarios for 5G [101]. As pointed

out above, generalized and versatile channel models, such as the TWDP, FTR, NWDP, κ-µ shad-

owed have been proposed to circumvent this issue. Hence, PLS research under generalized fading

conditions in scenarios where all nodes have multiple antennas is definitely crucial in the literature.
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1.1.4 Physical layer security via Reconfigurable Intelligent Sur-

faces

Very recently, RIS has drawn full attention for ensuring secure wireless communications in a low com-

plexity manner. Therefore, several researchers have addressed their efforts to investigate PLS on

RIS-aided wireless communications systems. Because of the rather complex nature of the RIS com-

posite fading model, the analytical characterization of PLS performance metrics is utterly unfeasible

and most works often resort to optimization techniques to maximize the secrecy rate metric [102]–

[105]. In such works, the authors maximize the secrecy rate by jointly optimizing the beamformers

at the transmitter and the reflecting coefficients at the RIS. Initial results on RIS-aided secure wire-

less systems with multiple legitimate nodes and multiple eavesdroppers were provided in [106] and

[107], respectively. Again, in these works, alternative optimization techniques were used to tackle

the non-convexity of the formulated problems. Other existing studies on secrecy RIS include secure

wireless communications exploiting deep reinforcement learning [108], secrecy rate maximization for

RIS-aided communications [109], programmable wireless environment for PLS [110], and artificial

noise to enhance the secrecy rate for RIS-assisted systems [111]. All the works cited above con-

sider only the secrecy rate as a performance metric in their reports. Nevertheless, the SOP is a

more suitable metric for practical scenarios since, in this secrecy metric, the Eavesdropper’s CSI is

not available at the transmitter. In this setup, the eavesdropper intercepts messages and does not

communicate with other users on the network. The authors in [112] studied the SOP performance

of the RIS-aided wireless communication system, where perfect knowledge of the channel phases is

assumed at the RIS. Based on this fact, an in-depth study of different secrecy metrics for RIS-aided

communications with more realistic assumptions is an open research topic in the literature.

1.2 HYPOTHESIS

This research work hypothesizes that, integrating enabling 5G and post-5G technologies (e.g., MIMO,

RIS) with physical layer security techniques would allow improving the information security of upcom-

ing wireless networks under realistic propagation conditions.

1.3 MAIN AND SUPPLEMENTARY OBJECTIVES

1.3.1 Main Objective

According to the previous statement, the main objective of this research work is:

“To assess the secrecy performance of adversary wireless scenarios empowered by next-generation

technologies, through physical layer security techniques assuming generalized fading conditions”.
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1.3.2 Supplementary Objectives

The asserted in the main objective is achieved, through the development of the following points:

• To propose a novel methodology for approximating the chief statistics (e.g., PDF, CDF and

MGF) of the sum of RV taken from generalized fading models.

• To formalize a pioneering methodology for approximating the chief statistics of the ratio of RV

taken from α-µ distributions.

• To model and analyze the performance of physical layer security of MIMO-and SISO-system

over generalized fading channels.

• To derive exact, approximate, or asymptotic analytical expressions for the secrecy performance

metrics related to the physical layer by assuming realistic propagation conditions.

• To obtain from the exact/asymptotic secrecy metric expressions, easy-to-use security criteria

for forthcoming communications networks over generalized fading channels.

• To propose a methodology for characterizing the RIS end-to-end equivalent channel using

traditional approximation approaches (e.g., MoM and CLT).

• To compare the secrecy performance of the derived analytical expressions concerning (i) the

results obtained through simulations of 5G and post-5G communication systems using the

Monte Carlo method; (ii) other approaches reported in the literature.

1.4 SUMMARY OF CONTRIBUTIONS

The major contributions of this thesis are fourfold: 1) First, the PDF for the sum of Nakagami-m RVs

is derived in terms of o the Nakagami-m mixture model (NMM). In that case, the parameters of the

approximate distribution are estimated by using an expectation-maximization (EM) algorithm; 2) The

PDF, CDF, and MGF of the ratio of two RVs taken from the α-µ distribution is derived in exact closed-

fashion in terms of the univariate Fox H-function; 3) Secrecy performance metrics, namely, SOP, ASC,

Asymptotic SOP, Asymptotic ASC are derived in closed-form expressions over i) NWDP SISO wiretap

channels, and i) κ-µ shadowed MIMO wiretap channels; and 4) Closed-form analytical expressions

for the average secrecy rate (ASR) and the SOP of an RIS-aided wireless communication system

in the presence of an eavesdropping user are also derived in terms of well-known functions in the

communication theory.

1.4.1 Thesis Outline

This thesis is organized as follows:
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Chapter 2 provides some fundamental concepts concerning PLS. Here, the secrecy metrics most

used by researchers as design criteria in order to describe adversary scenarios’ security level are

reviewed. Specifically, the secrecy capacity, SOP, ASC, Asymptotic SOP, and Asymptotic ASC are

reviewed. Furthermore, the generalized fading channel models NWDP and κ-µ shadowed are revis-

ited. Finally, the basic working principles of the diversity combining techniques on both the transmitter

(e.g., TAS) and the receiver (e.g., MRC and EGC) to mitigate fading effects are also described.

Chapter 3 presents an accurate approximation for the exact sum PDF of Nakagami-m RVs using a

mixture of two Nakagami RVs. In such approximation, the approximate distribution’s parameters are

calibrated via the EM algorithm. An application example regarding the sum of RVs is also presented.

Specifically, an analytical formulation of the Average Bit Error Probability (ABEP) of multibranch EGC

receivers is obtained. Furthermore, a novel approach named the “asymptotic matching" method to

approximate sums of independent channel envelopes that follow generalized fading models is intro-

duced. Based on the asymptotic matching, an approximate expression for the sum of κ-µ RVs is

derived by matching its asymptotic behavior around zero to that of the exact solution. Next, novel

closed-form expressions for the PDF, CDF, and MGF of the ratio of two RVs taken from α-µ distribu-

tion in terms of the single Fox H-function as well as in terms of simple infinite series are developed.

An application example in PLS over α-µ RVs is used to demonstrate the obtained expressions’ use-

fulness.

Chapter 4 analyzes the PLS performance over NWDP SISO wiretap fading channels. In particular,

novel closed-form fashions for the SOP, Asymptotic SOP, ASC, and Asymptotic are derived in terms

of well-known functions in the communication theory literature. Such analytical expressions have

comparable complexity to those obtained in approximate form for the simplified case of the TWDP

fading channel model.

Chapter 5 provides new equivalent forms of κ-µ shadowed CDFs, which are very helpful to derive

either the maximum or minimum of i.i.d. κ-µ shadowed RVs. Based on these results, secrecy ex-

pressions are developed in a TAS/MRC configuration under κ-µ shadowed fading. Specifically, exact

closed-form formulations for the SOP and ASC are derived. Also, simple asymptotic expressions for

the SOP and the ASC in the high Signal-to-Noise Ratio (SNR) regime are obtained.

Chapter 6 investigates the secrecy performance of RIS-assisted wireless communications with im-

perfect phase estimation. Novel closed-form formulations for both the SOP and ASR are obtained by

leveraging recent formulations of the RIS composite fading channel as an equivalent scalar channel.

Analytical asymptotic expressions for the SOP and ASR in the high SNR region are also derived

Chapter 7 provides the main conclusions and indicates opportunities for future research topics.
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2 PRELIMINARIES

This chapter reviews several key notions concerning 1) PLS; 2) fading channels models; 3) diver-

sity combining techniques; and 4) RIS-aided wireless systems, which will serve as background to

understand the results obtained in this thesis.

2.1 FUNDAMENTALS OF PHYSICAL LAYER SECURITY

In this section, the essential concepts to understand PLS in wireless communications systems are

introduced.

2.1.1 General System Model

As introduced in Wyner’s work [66], the wiretap channel consists of three nodes, as illustrated in

Fig. 2.1.

Alice

Bob

Eve

hAB

hAE

Main channel

Wiretap channel

Figure 2.1: The wiretap model with two legitimate nodes and an eavesdropper, based on [66]

The first node is the legitimate transmitter (also known as Alice in network security jargon), the

second node is the intended receiver (also known as Bob), and the third node is the eavesdropper

(also known as Eve). The channel between Alice and Bob (i.e., hAB) is known as the legitimate

channel, while the channel between Alice and Eve is named the wiretap channel (also known as

Eavesdropper channel, i.e., hAE). In this setup, Alice transmits confidential information to Bob, while
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Eve receives the signal and intends to decode it. Therefore, Alice’s goal is to use a transmission

approach that can deliver the secret information to Bob while making sure that Eve cannot intercept

the transmitted data. Under basic SISO wiretap channel configuration, the received signals at both

Bob and Eve are given by [66]

yi =
√
PhAix+ ni, (2.1)

where P is the transmit power at Alice, and hAi with i ∈ {B,E} denotes the channel coefficients

for either the main channel or the eavesdropper channel, respectively. Also, nB and nE are additive

white complex Gaussian noise at the receivers with zero mean and variance σ2
i . From (2.1), the

corresponding instantaneous SNRs at the receivers can be expressed as

γi =
P |hAi|2
σ2

i

. (2.2)

In order to attain secrecy in wireless systems, PLS uses signal processing techniques designed

to take advantage of specific features of the channel, including fading, noise, interference, among

others [24]. Another relevant factor to take into account in the wiretap channel (see, Fig. 2.1) is the

availability of CSI in all the nodes (i.e., Alice, Bob, and Eve). CSI can vary from complete, partial to

even null at the nodes. From a secrecy perspective, CSI is of paramount importance because, based

on its knowledge, the transmitter can decide whether or not to transmit and at which rate [113]. Thus,

this fact will lead to achieving remarkable improvement in the SOP. However, in practice, all nodes

can only obtain some kind of information about the channel between them and the other nodes. Alice

is generally considered to know Bob’s CSI but not Eve’s CSI. This is because Eve is typically passive

(i.e., Eve monitors the network, intercepts messages, and does not communicate with other users

in the network). Furthermore, there are scenarios in which Eve is active and performs some of the

following actions: intentional interference (also known as jamming), adulteration and modification, or

denial of service [114]. At this point, it is worth mentioning that in our PLS analysis over generalized

fading channels, this research focuses on practical adversary scenarios, i.e., passive attacks.

2.1.2 Secrecy Metrics

Here, the most frequently used secrecy performance metrics in the state-of-the-art are revisited. A

good understanding of such metrics will facilitate understanding of the contributions addressed in the

following chapters.

2.1.2.1 Secrecy Capacity

The secrecy capacity, CS, for a wiretap wireless channel is the most used metric in PLS evaluation.

CS is defined as the capacity difference between the main and wiretap channels. Mathematically, it

13



defines the maximum secret rate at which the secret message reliably recovers at transmitter while

remaining unrecoverable at Eve [115]. Therefore, the CS in a quasi-static fading channel case is

formulated as in [66] by

CS =max {CB − CE, 0}

=max
{

W log2(1 + γB) − W log2(1 + γE), 0
}

(2.3)

where γi for i ∈ {B,E} is the instantaneous SNR at the receivers given by (2.2), and CB and CE

are the capacities of the main and wiretap channels, respectively. Without loss of generality, it is

considered a normalized bandwidth of W = 1 in the capacity formulations mentioned above. Under

this scenario, it is possible to attain secure transmissions only if the legitimate link has a better SNR

than the eavesdropper link, i.e., [66]

CS =





log2

(
1+γB

1+γE

)
, if γB > γE

0, if γB ≤ γE,
(2.4)

Here, it is worth mentioning that the CS is widely extended by researchers to compute the SOP [70],

which is describer below.

2.1.2.2 Secrecy Outage Probability

The SOP is defined as the probability that the secrecy capacity falls below a secrecy rate threshold

RS. In other words, when the current CS is not more than RS, the secrecy outage occurs, i.e.,

RS > CS. This means that the current secrecy rate cannot guarantee the security requirements. On

the other hand, in those instants on which RS ≤ CS, secrecy is achieved. This metric is commonly

used with silent eavesdroppers, whose CSIs are not available at the source. Therefore, the source

decides whether or not to transmit based on the information about the receiver’s CSI. In practice, this

setup is associated with a passive eavesdropping scenario. According to [116], the exact SOP can

be formulated as

SOP = Pr
{
CS (γB, γE) < RS

}

= Pr

{(
1 + γB

1 + γE

)
< 2RS

∆
= τ

}

= Pr {γB < τγE + τ − 1}

=

∫ ∞

0

FγB
(τγE + τ − 1) fγE

(γE)dγE. (2.5)

Note that the SOP is a useful performance metric for measuring information leakage. Due to the

mathematical complexity of (2.5) when dealing with generalized fading channels, a high SNR ap-
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proximation of the SOP defined as SOPA can be obtained from (2.5) as [99]

SOPA = Pr

{
γB

γE
< τ

}

= Pr {γB < τγE}

=

∫ ∞

0

FγB
(τγE) fγE

(γE)dγE. (2.6)

It is worth highlighting that PLS research over different types of fading channels focuses on the

computation of (2.6) due to its simpler mathematical tractability with respect to the exact formulation

in (2.5). Furthermore, SOPA is well-known as the ratio of two random variables, namely: γB and

γE, which can follow any fading distribution. Based on this fact, one contribution of this thesis is the

derivation of mathematical analytical expression of the ratio of two random variables, which follow

α-µ fading channels.

2.1.2.3 Asymptotic Secrecy Outage Probability

This metric is widely used to gain insights into the impact of the fading parameters on the secrecy

performance in wiretap channels. The asymptotic measure investigates the behavior of the SOP

at high SNR regime. Generally, for the asymptotic analysis, two scenarios are considered: (i) the

average received SNRs at both the legitimate and the eavesdropper sides go to infinity, i.e., γB →
∞, γE → ∞, while the ratio between these SNRs, i.e., γB/γE is kept unchanged. This scenario

corresponds to the case when both the legitimate destination and the eavesdropper are close to the

source; (ii) only the average received SNR at the legitimate destination goes to infinity, i.e., γB → ∞
while γE is kept fixed. Here, this scenario corresponds to the case where the legitimate entity is very

close to the source and the eavesdropper is located far away. The goal in the asymptotic analysis is

to find an asymptotic SOP expression in the form [117]

SOP∞ ≃ Gcγ
−Gd

B (2.7)

where Gc and Gd represent the secrecy array gain and the secrecy diversity order/gain. It is worth

mentioning that a challenging task is to derive asymptotic SOP expressions for the generalized fading

channels (e.g., κ-µ shadowed, and purely ray-based models).

2.1.2.4 Average Secrecy Capacity

When dealing with active eavesdropping scenarios, where the CSIs of both main and eavesdropper

channels are available at the source, the ASC is the most common secrecy metric used to evalu-

ate secrecy performance in wireless communications systems. Unlike the passive eavesdropping

scenario, in active eavesdropping case, Alice can now adapt her transmission rate according to any
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achievable secrecy rate RS such that RS ≤ CS. Then, the maximum achievable secrecy rate occurs

when RS = CS. According to [70], the ASC, CS, is defined as the average of the secrecy rate over

the instantaneous SNR of the main and eavesdropper channels. For mathematical convenience,

throughout this thesis, it is used the formulation of CS proposed in [99, Proposition 3], so it follows

that

CS = CB − L (γB, γE) , (2.8)

where CB is the average capacity of the main link in the absence of an eavesdropper, given by [99]

CB =
1

ln 2

∫ ∞

0

1 − FγB
(γE)

1 + γE
dγE, (2.9)

or

CB =
1

ln 2

∫ ∞

0

ln(1 + γE)fγB
(γE)dγE. (2.10)

It is worthwhile to mention that the formulations in (2.9), and (2.10) can be used to computed the

average secrecy capacity of the eavesdropper link, i.e., CE by replacing the corresponding PDF y

CDF distributions of the eavesdropper channel. The L (γB, γE) term can be interpreted as an ASC

loss, defined as [99]

L (γB, γE) =
1

ln 2

∫ ∞

0

F γE
(γE)F γB

(γE)

1 + γE
dγE ≥ 0, (2.11)

in which F γB
and F γE

denote the complementary CDF (CCDF) of the RVs γB, and γE, respectively.

2.1.2.5 Asymptotic Average Secrecy Capacity

This metric examines the behavior of the ASC in the high-SNR region. As in the Asymptotic SOP

case, two scenarios can be studied (i) both γB and γE go to infinity, while the ratio between these

SNRs is kept unchanged; (ii) γB → ∞ while γE is kept fixed. The latter case is the most used in

the literature due to is helpful to understand the system behavior when the legitimate link quality is

much better than the eavesdropper’s link quality. Based on this, the exact asymptotic expression of

the ASC can be formulated as [99]

C
∞
S ≃ C

γB→∞
B − CE, (2.12)

where CE is calculated by (2.9) or (2.10) with the respective substitutions. It is appropriate to mention

that an accurate approximation of C
∞
S in the high-SNR regime can be expressed in the form [118]

C
γB→∞
B ≈ log2(γT) − t, (2.13)
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where γT is the total average SNR at the receiver side, and t denotes the capacity loss, which is

given by [118]

t = − log2(e)
dM(g)

dg

∣∣∣∣
g=0

(2.14)

where M(g) denotes the normalized moments of the RV γB given by [118]

M(g) ,
E
[
γg

B

]

γg
B

. (2.15)

All these secrecy metrics will be used in the secrecy performance analysis over generalized fading

channels subsequently.

2.2 FADING CHANNEL MODELS OVERVIEW

Due to the several uncertainties in the wireless environment, it is convenient to statistically model the

channel with fading distributions. In the basic SISO setup, the received signal arises as a constructive

or destructive combination of randomly delayed, reflected, scattered, and diffracted multipath waves.

This fading type is well-known as fast fading and is responsible for rapidly-varying fluctuations in

the received signal. Based on the multipath propagation, the complex base-band signal can be

expressed as [17]

Ṽ = R exp (jθ) =

M∑

i=1

Vi exp (jθi) , (2.16)

where M is the number of the multipath waves, R and θ denotes the the magnitude and phase of

Ṽ , respectively, Vi exp(jθi) represents the i-th component having an amplitude Vi and random phase

θi. Depending on the wireless propagation medium’s nature, different fading distributions have been

proposed in the literature to describe the signal envelope’s statistical behavior. In the next section, the

most widely used fading channels to describe the statistical behavior of the received signal amplitude,

i.e., R =
∥∥∥Ṽ
∥∥∥ are reviewed. Specifically, both the classical and the generalized fading channels are

addressed. Finally, it is worth mentioning that all the system models consider only flat-fading to

characterize the fading effects on narrowband wireless communications.

2.2.1 Classical fading models

When a sufficiently large M is assumed in (2.16), the base-band voltage, Ṽ , can be regarded as a

complex Gaussian RV by virtue of the CLT [119, Sec. 27]. Different classical fading models can be

built depending on the choice of the complex Gaussian RV’s parameters, i.e., the mean and variance

of the in-phase and quadrature components. Based on this fact, the literature’s most commonly used

conventional fading channel models are described in the following.
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2.2.1.1 Rayleigh Fading Model

The Rayleigh model considers that the multipath waves in (2.16) have constant amplitude and inde-

pendent phases which are uniformly distributed into the interval [−π, π). Under the CLT assumption,

the received signal envelope R is characterized as a zero mean circularly-symmetric complex Gaus-

sian RV by [120]

R =‖σX + jσY ‖ , (2.17)

where X and Y are independent Gaussian RVs, i.e., X,Y ∼ N (0, 1), and σ2 ∈ R+ denotes the

variance of both in-phase and quadrature components of the complex Gaussian RV. From [120], the

PDF and CDF of the channel fading amplitude R are distributed according to

fR(r) =
2r

Ω
exp

(
−r2

Ω

)
, (2.18)

FR(r) = 1 − exp

(
−r2

Ω

)
, (2.19)

where Ω = E
[
R2
]

= 2σ2 is the average received power determined by the path loss and shadowing

phenomenon. The Rayleigh distribution is widely used for NLoS scenarios. Furthermore, due to

the mathematical simplicity of (2.18), several theoretical research on wireless communications have

been investigated under the assumption of i.i.d. Rayleigh fading.

2.2.1.2 Rician Fading Model

In contrast to the Rayleigh model, if there is a strong LoS path, the Gaussian RV complex’s real and

imaginary parts no longer have mean of zero. Again, based on CLT, the received signal R in (2.16)

is model as nonzero mean circularly-symmetric complex Gaussian RV by [120]

R =
∥∥σX + p+ j(σY + q)

∥∥ , (2.20)

in which X,Y ∼ N (0, 1), and σ2 ∈ R+ denotes the variance of both in-phase and quadrature com-

ponents of the complex Gaussian RV. Also, p and q ∈ R+ are the mean values of the in-phase and

quadrature components, respectively. From [121], the amplitude of the received signal of (2.20) is a

Rician distribution with PDF and CDF given by

fR(r) =
2r(1 +K)

Ω
exp

(
−K − r2(1 +K)

Ω

)
I0

(
2r

√
K(1 +K)

Ω

)
, (2.21)

FR(r) = 1 − Q1

(
√

2K, r

√
2(1 +K)

Ω

)
, (2.22)
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where Ω = E
[
R2
]

= p2 + q2 + 2σ2 is the mean received power, and K = (p2 + q2)/(2σ2) is the Rician

factor which denotes the ratio between the power of the dominant component and the power of the

scattering waves. For K = 0, (2.21) reduces to the Rayleigh distribution.

2.2.1.3 Nakagami-m Fading Model

Nakagami fading model was proposed in [35] as a natural generalization of Rayleigh distribution to

improve the fitting of experimental measurements for different propagation conditions. The received

signal envelope, R, can be formulated from the same underlying complex Gaussian model than the

previous fading distributions as [35]

R =

√√√√
m∑

i=1

‖σXi + jσYi‖2
, (2.23)

wherem ∈ N+ is the fading severity parameter,Xi, Yi ∀i are independent Gaussian RVs, i.e.,Xi, Yi ∼
N (0, 1), and σ2 ∈ R+ denotes the variance of both in-phase and quadrature components of the

complex Gaussian RV of cluster i. From [35], the PDF and CDF of the received signal envelope, R,

are given by

fR(r) =
2mmr2m−1

Γ(m)Ωm
exp

(
−mr2

Ω

)
, (2.24)

FR(r) =
Υ
(
m, mr2

Ω

)

Γ (m)
, (2.25)

where Ω = E
[
R2
]

is the mean received power, and m = Ω2/V
[
R2
]

≥ 1/2. Note that, the PDF

and CDF given in (2.24) and (2.25) respectively, are valid for m ∈ R+. Moreover, for m = 1, (2.24)

reduces to the Rayleigh PDF. An important remark is that the Nakagami-m distribution is often used to

approximate the Rician distribution by properly mapping the Rician factorK asm = (1+K)2/(1+2K).

Such approximation dates back from the original paper by Nakagami [35], and has been largely

used in communication theory for decades. Even though such approximation is rather popular, it

has important limitations when it comes to approximating the asymptotic behavior in outage-related

metrics [122].

2.2.2 Generalized fading models

As mentioned early, in order to gain more degrees of freedom (i.e., more flexibility) when attempting

to model fading conditions in more intricate environment (e.g., mm-Wave scenarios in 5G), several

fading channels models have been proposed in the literature in the last years. Such generalized

fading models not only provide an accurate fit with the field measurements in emerging 5G scenarios,

but they also encompass distinct classical fading distributions. Next, two general distributions, as well

as their connections to other popular fading models are described.
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2.2.2.1 The α-µ Fading Model

The α-µ fading distribution was proposed in [123], and its applicability has been tested in various

practical scenarios. For instance, field measurements of diverse propagation environments inves-

tigated in [124]–[126] have shown that the α-µ distribution suits better statistical variations of the

propagated signal than the commonly used fading models. In the α-µ model, the received signal

envelope includes an arbitrary number, µ, of multipath components and is observed as a nonlinear

function of the modulus of the sum of such components. Assuming that the nonlinearity term is

expressed in the form of a power parameter, α > 0, so that the resulting envelope R is given by [123]

R = α

√√√√
µ∑

i=1

‖σXi + jσYi‖2
, (2.26)

where Xi, Yi ∀i are independent Gaussian RVs, i.e., Xi, Yi ∼ N (0, 1), and σ2 ∈ R+ denotes the

variance of both in-phase and quadrature components of the multipath waves of cluster i. From,

[123], the corresponding PDF and CDF of R are expressed as

fR(r) =
αµµrαµ−1

Γ(µ)Ωµ
exp

(
−µrα

Ω

)
, (2.27)

FR(r) =
Υ
(
µ, µrα

Ω

)

Γ (µ)
, (2.28)

where Ω = E[Rα] is a scale parameter, and µ = E2[Rα]/V[Rα]. In particular, for µ = 1, (2.27) reduces

to the Weibull PDF and, for α = 2, to the Nakagami-m PDF.

2.2.2.2 The κ-µ Fading Model

The κ-µ model arises as a natural generalization of the Rician distribution. In such a model, the

clusters of the received signal envelope are composed of both scattered and LoS waves. The LoS

components’ power is assumed to be different in each cluster, but the scattered waves of all clusters

have the same power. Therefore, the received signal amplitude R is given by [127]

R =

√√√√
µ∑

i=1

∥∥σXi + pi + j(σYi + qi)
∥∥2
, (2.29)

where Xi, Yi ∀i are independent Gaussian RVs, i.e., Xi, Yi ∼ N (0, 1), σ2 ∈ R+ denotes the variance

of both in-phase and quadrature components of the multipath waves of cluster i, and µ is the number

of clusters of multipath. Also, pi and qi ∈ R+ are the mean values of the in-phase and quadrature

components of the multipath waves of cluster i, respectively. From [127], the PDF and CDF of R are

20



given by

fR(r) =
2µ(1 + κ)

1+µ
2 rµ

κ
µ−1

2 Ω
µ+1

2 exp(µκ)
exp

(
−µ(1 + κ)r2

Ω

)
Iµ−1

(
2µr

√
κ(1 + κ)

Ω

)
, (2.30)

FR(r) = 1 − Qµ

(
√

2κµ, r

√
2µ(1 + κ)

Ω

)
, (2.31)

where

κ =

∑µ
i=1 p

2
i + q2

i

2µσ2
, Ω = E[R2] =

µ∑

i=1

p2
i + q2

i + 2µσ2. (2.32)

As particular cases, for (κ = K,µ = 1), (2.30) reduces to the Rician PDF and, for (κ = 0, µ = m), to

the Nakagami-m PDF. Note that κ is defined in a similar way to that Rice K-factor, corresponding to

the ratio between the power of the LoS waves and the power of the diffuse components. Although

the physical model of κ-µ in (2.29) forces µ to be a positive integer, the PDF and CDF given in (2.30)

and (2.31), respectively, are valid for µ ∈ R+.

2.2.2.3 The κ-µ shadowed Fading Model

The κ-µ shadowed model was proposed in [21] as a generalization of the κ-µ distribution. The κ-µ

shadowed model considers a signal composed of clusters of multipath waves, propagating in a non-

homogeneous environment. Within each cluster, the multipath waves have scattered diffuse waves

with identical power and a specular component with certain arbitrary power. Unlike the conventional

κ-µ model, the dominant component of the i-th cluster of the κ-µ shadowed model is allowed to

fluctuate randomly. Therefore, the received envelope signal, R, be formulated as [21]

R =

√√√√
µ∑

i=1

∥∥σXi + jσYi + ξ(pi + jqi)
∥∥2
, (2.33)

where µ is the number of the multipath clusters, Xi, Yi ∀i are independent Gaussian RVs, i.e.,

Xi, Yi ∼ N (0, 1), σ2 ∈ R+ denotes the variance of both in-phase and quadrature components of

the multipath waves of cluster i. Also, ξpi + ξqi represents the dominant component of the ith clus-

ter with power given by p2
i + q2

i , where pi and qi ∈ R+ are the mean values of the in-phase and

quadrature components of the multipath waves of cluster i, respectively. The total power of the scat-

tered components for each cluster is 2σ2. The κ parameter is defined as the ratio between the total

power of the dominant components and the total power of the scattered waves can be computed as

κ = d2/(2σ2µ), where d2 =
∑µ

i=1 p
2
i + q2

i . The specular components for each cluster are subject to

the same shadowing fluctuation ξ, which follows a Gamma RV with scale parameter m and spreading

parameter E{ξ} = 1. From [21], the PDF and CDF of the received signal envelope R are expressed

as [21]

fR(r) =
2µµmm(1 + κ)µ r2µ−1

ΩµΓ(µ)(µκ+m)m
exp

(
−µ(1 + κ)r2

Ω

)

1F1

(
m;µ;

µ2κ(1 + κ)r2

(µκ+m)Ω

)
, (2.34)
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Tabla 2.1: Conventional and general fading models derived from the κ-µ shadowed distribution.

Fading Distribution κ-µ shadowed parameters
One-sided Gaussian µ = 0.5, κ → 0, m → ∞

Rayleigh µ = 1, κ → 0, m → ∞
Nakagami-m µ = m, κ → 0, m → ∞

Rician µ = 1, κ = K, m → ∞
κ-µ µ = µ, κ = κ, m → ∞
η-µ µ = 2µ, κ = (1 − η)/(2η), m = µ

Hoyt (Nakagami-q) µ = 1, κ = (1 − η)/(2η), m = 0.5

Rician Shadowed µ = 1, κ = K, m = m

FR(r) =
µµ−1mm(1 + κ)µ r2µ

ΩµΓ(µ)(µκ+m)m
Φ2

(
µ−m,m;µ+ 1; −µ(1 + κ)r2

Ω
,−µ(1 + κ)mr2

Ω (µκ+m)

)
, (2.35)

where the κ and Ω are given in (2.32). Furthermore, (2.34) and (2.35) are valid for µ ∈ R+. According

to the characteristics of the channel described above, the κ-µ shadowed fading model finds great

applicability in a range of real-world applications such as D2D communications, Underwater Acoustic

Communications (UAC), body-centric fading channels, UAV systems, Land Mobile Satellite (LMS),

etc [10]. It is worth mentioning that in [128], the κ-µ shadowed distribution can be characterized as

a finite mixture of Nakagami-m RVs under the assumption of having positive integers values for µ

and m. Finally, Table 2.1 summarizes the connections between the κ-µ shadowed distribution and

other fading channel models. In order to avoid confusion, the parameters corresponding to the κ-µ

shadowed distribution are underlined.

2.2.2.4 N-wave with Diffuse Power Fading Model

In the NWDP model, the received envelope signal is represented as a superposition of N multipath

waves arising from dominant specular reflections and M additional waves associated with diffuse

scattering [20, Eq. (2)]:

Ṽ = R exp (jθ) =

N∑

n=1

Vn exp (jθn) +

M∑

i=1

Vi exp (jθi) , (2.36)

where Ṽ is the received complex base-band signal with magnitude R and phase θ, Vn exp(jθn)

denotes the n-th specular component having a constant amplitude Vn and a uniformly distributed

random phase θn ∼ U [0, 2π). The random phases for each dominant wave are assumed to be

statistically independent. Because each diffuse scattered is able to generate several multipath

waves [129], one can safely assume that M → ∞ and hence the diffuse component tends to be

Gaussian distributed, i.e.,
∑M

k=1 Vk exp (jθk) ≈ Vd exp (jθd), so that Vd is Rayleigh distributed with

E{|Vd|2} = 2σ2 = Ω. Notice that the consideration of arbitrary N in (2.36) allows for individually

accounting for the effect of having multiple specular waves and widely differs from the conventional

assumptions in fading modeling, reducing only for N = 0, 1, 2 to the Rayleigh, Rician, and TWDP
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cases, respectively [17]. According to [20], the corresponding PDF and CDF of the received ampli-

tude signal, R, are given by

fR(r) = 2ǫr exp
(

−ǫr2
) ∞∑

z=0

CnLn

(
ǫr2
)
, (2.37)

FR(r) =

∞∑

z=0

Cz

z∑

k=0

(−1)k

k!

(
z

k

)
Υ
(
k + 1, ǫr2

)
, (2.38)

where the constant ǫ and the coefficient Cz are defined as

ǫ =
1

∑N
n=0 V

2
n + Ω

, Cz =

z∑

k=0

(−ǫ)k

k!

(
z

k

)
u

(2k)
N+1, (2.39)

where

u2k
j =

k∑

w=0

(
k

w

)2

u
(2w)
j−1 v

(2k−2w)
j , for j = 2, . . . ,N + 1, (2.40)

in which the initial value is u2k
1 = v2k

1 , and

v2k
j =





V 2k
j , for j = 1 . . .N,

(1)k (Ω)
k
, for j = N + 1.

(2.41)

It is worth highlighting that two-ray-based models (i.e., FTR and TWDP) have shown good fit to

empirical measurements in mm-Wave communications [19], [130]. Therefore, the NWDP model is

a promising candidate to improve fading channel modeling in mm-Wave because it includes several

degrees of freedom more than FTR and TWDP models.

2.3 DIVERSITY COMBINING TECHNIQUES

Dealing with the damaging effects of multipath propagation is one of the difficult tasks in designing

wireless communication systems. There are many techniques for combating these effects, including

diversity combining techniques, coding and adaptive equalization, among others [3]. Specifically,

diversity techniques have attracted significant attention for their efficiency and relative simplicity of

implementation. The principle of diversity establishes that fading in independent channels are inde-

pendent events. Thus, if specific information is made available with redundancy in a certain number

of channels (branches of diversity), the probability that it is affected by a deep fading, simultaneously

in all channels, is less than the probability of occurring in one of these channels [120]. Therefore,

by combining the different branches’ information signals with an appropriate algorithm (i.e., diversity

techniques), a resulting signal less deteriorated by the fading that marks each branch individually is

obtained. Next, detailed description of the most used diversity combining methods in the literature is

provided.
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Figure 2.2: Illustration of a combiner in a MISO system, based on [131].

2.3.1 Transmitter Antenna Diversity

For this setup, it is considered that the transmitter is equipped with Mt antennas as depicted in

Fig. 2.2, where x(k) is the sequence of data with i.i.d symbols. Based on the particular transmit

diversity method, the data is first pre-processed to form a sequence of transmit symbol vector, i.e.,

s(k) =
[
s1(k), s2(k), . . . , sMt

(k)
]

to later be transmitted over the Mt antennas in the k-th symbol

period. The transmitted signal on the k-th antenna is given by [131]

si(k) = βix(k), for i = 1, . . . ,Mt, (2.42)

where β1, β2, . . . , βMt
are the weighting factors applied on the Mt antennas, respectively. The signal

observed at the receiver can be written as [131]

y(k) =

Mt∑

i=1

√
Phisi(k) + n(k), (2.43)

where P is the total transmit power, hi is the channel coefficient between the i-th transmit antenna

and the receiver, and and n(k) is a zero-mean circularly symmetric complex Gaussian RV with vari-

ance σ2. Here, based on the knowledge of the CSI at the transmitter, different techniques (e.g.,

transmit Beamforming and TAS) can be used to exploit spatial diversity. The next section focuses on

the TAS scheme that will be used later.

2.3.1.1 Transmit Antenna Selection

Suppose that the transmitter can obtain knowledge of the channel amplitude but not the channel

phase information (i.e., partial CSI)[1]. Therefore, the transmitted signal over multiple antennas cannot

be co-phased at the receiver side. In this case, it is more efficient to transmit only on the antenna

with the best channel to avoid destructive interference. Now, assuming that the i∗-th antenna is the

[1] Such a case is very common in practice because the phase varies much faster than the channel ampli-
tude, making it more challenging to estimate.
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Figure 2.3: Illustration of a combiner in a SIMO system, based on [131].

one experiencing the highest SNR, i.e., [131]

i∗ = arg max
1≤i≤Mt

P |hiβi|2
σ2

, (2.44)

and is chosen to transmit, so that [131]

βi =





1, for i = i∗,

0, for i 6= i∗.
(2.45)

Therefore, (2.43) can be rewritten as [131]

y(k) =
√
Phi∗x(k) + n(k). (2.46)

From (2.46), the resulting SNR for the TAS scheme is expressed by [131]

γTAS =
P |hi∗ |2
σ2

= max
1≤i≤Mt

P |hi|2
σ2

. (2.47)

It is worth mentioning that the TAS/MRC setup is an excellent choice in the performance analysis

of wireless systems with multiple antennas due to its low implementation complexity compared to

Transmit Beamforming/MRC schemes.

2.3.2 Receiver Antenna Diversity

When the receiver is equipped with multiple antennas (i.e., SIMO setup), the system performance

can be improved using spatial diversity at the receiver side. Consider the configuration where the

transmitter with single-antenna sends information to a receiver equipped with Mr antennas, as il-

lustrated in Fig. 2.3. In such a scheme, the received signal at i-th branch can be expressed as

[131]

yi(k) =
√
Phix(k) + ni(k), for i = 1, . . . ,Mr, (2.48)

where x(k) is the symbol to be transmitted in the k-th symbol period, P is the transmit power, hi is

the channel coefficient observed by the i-th received antenna, and ni(k) is a zero-mean circularly
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symmetric complex Gaussian RV with same variance σ2
i at the i-th antenna. The channel coefficient

hi can be expressed in terms of its amplitude |hi| and phase θi as [131]

hi = |hi| exp(jθi), for i = 1, . . . ,Mr. (2.49)

From (2.48), the SNR at the i-th antenna is defined as [131]

γi =
P |hi|2
σ2

i

. (2.50)

By assuming that the CSI of the channel coefficients is available at the receiver side. Therefore,

before performing signal detection, the receiver combines the received signals with the respective

weighting factors, i.e., αi ∀i (see Fig. 2.3), to obtain the resulting signal at the combiner output as

[131]

z(k) =

Mr∑

i=1

αiyi(k). (2.51)

Here, depending on the weighting factors’ values, two different signal combining techniques are

introduced below.

2.3.2.1 Equal Gain Combining

In this technique, the received signals on Mr branches are each multiplied by a complex weighting

factor for the phase rotation of the channel. Such weighting factors are given by [131]

αi = exp(−jθi), for i = 1, . . . ,Mr. (2.52)

Note that the magnitudes of the weighting factor, i.e. |αi| ∀i, are equal to unity. This fact reduces the

implementation complexity compared to the MRC to be introduced later on. Substituting (2.52) into

(2.51), the signal output of the EGC is given by [131]

zEGC(k) =
√
P




Mr∑

i=1

|hi|


x(k) +

Mr∑

i=1

exp (−jθi)ni(k) (2.53)

From (2.53), the resulting SNR at the output of the EGC combiner can be expressed as [131]

γEGC =
P
(∑Mr

i=1|hi|
)2

∑Mr

i=1 σ
2
i

=
P
(∑Mr

i=1|hi|
)2

Mrσ2
i

(2.54)
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With the help of (2.50), (2.54) can be rewritten in compact form as

γEGC =
1

Mr




Mr∑

i=1

√
γi




2

. (2.55)

2.3.2.2 Maximal Ratio Combining

Although EGC uses CSI to determine their weighting factors, such values are no optimized in any

sense. Therefore, to fully exploit the spatial diversity in multiple receive antennas, it is necessary

to choose the weighting factors to maximize the received SNR. Based on this, given the CSI, the

weighting factors of the MRC can be formulated as [131]

αi = h∗
i /σ

2
i = |hi| exp(−jθi)/σ

2
i , for i = 1, . . . ,Mr. (2.56)

Note that the received signals are weighted based on their channel quality and are co-phased to

achieve the phase-coherent addition of signals at the receiver. In other words, branches with a

strong signal are further amplified, while weak signals are attenuated. Substituting (2.56) into (2.51),

the signal output of the MRC is given by [131]

zMRC(k) =
√
P




Mr∑

i=1

|hi|
σ2

i


x(k) +

Mr∑

i=1

h∗
i

σ2
i

ni(k). (2.57)

From (2.57), the resulting SNR at the output of the MRC combiner can be expressed as [131]

γMRC =
P
(∑Mr

i=1|hi|2 /σ2
i

)2

∑Mr

i=1|hi|2 /σ2
i

=

Mr∑

i=1

P |hi|2
σ2

i

(2.58)

Again, with the help of (2.50), (2.58) can be rewritten in compact form as

γMRC =

Mr∑

i=1

γi. (2.59)

Notice that (2.59) is essentially the sum of the received SNRs at all branches.

2.3.3 Performance Metric for Multibranch Combining Receivers

Several metrics to assess the performance of diversity combining techniques over different fading

channels have been proposed in the literature [120]. Among these metrics, the ABEP is the most

commonly used to evaluate communications systems’ performance because of its straightforward
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interpretation. Specifically, the formulations for the ABEP at the output of EGC multibranch receivers

for coherent and non-coherent modulation techniques are revisited in the following. This performance

metric will be incorporated as an application for sums of RVs in Chapter 3.

2.3.3.1 Average Bit Error Probability

Here, the exact formulations of the ABEP at the output of multibranch EGC receiver associated with

coherent and non-coherent modulation techniques are revisited. In particular, the exact solution for

the ABEP in EGC reception can be defined as in [120] by

P̄e =

∫ ∞

0

Pe(r)fR(r)dr, (2.60)

where fR(r) is the PDF of the sum of fading amplitudes at the output of the EGC combiner. The

combiner output envelopeR can be obtained from (2.55) using a standard transformation of variables,

i.e., R =
√
γEGC. Therefore, it follows that [49]

R =
1√
Mr

Mr∑

i=1

Ri. (2.61)

Also, Pe(r) denotes the conditional bit error probability. Considering non-coherent Modulations, Pe(r)

can be expressed as in [120] by

Pe(r) =
1

2
exp(−g r2Eb/N0), (2.62)

where N0 is the one-sided AWGN variance, Eb is the bit energy, and g is a modulation dependent

parameter such that g = 1 for Differential Binary Phase-Shift Keying (DBPSK), and g = 1/2 for non-

coherent Binary Frequency-Shift Keying (BFSK). For coherent Modulations, Pe(r) can be defined as

in [120] by

Pe(r) =
1

2
erfc

(
r
√
gEb/N0

)
, (2.63)

where g = 1 for coherent Binary Phase Shift keying (BPSK), g = 1/2 for coherent BFSK, and g =

0.715 for coherent BFSK with minimum correlation. In general, the main difficulty associated with

evaluating the ABEP in (2.60) is related to the requirement of obtaining the PDF of the sum of RVs

given in (2.61). Such PDF requires the convolution (as will be seen later) of the individual PDFs Ri

and can often be challenging to evaluate. Therefore, one of this thesis’s contributions is to provide

simple and accurate approximations for the sum of RVs to facilitate wireless systems’ performance

analysis with multiple antennas.
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2.4 FUNDAMENTALS OF RIS-ASSISTED WIRELESS COMMUNICA-

TIONS

In this section, in order to understand the motivation behind the PLS of RIS-aided communications, a

theoretical background on how a basic communication system works with the help of RIS technology

is introduced.

Reflecting Element

S Obstacles

Reconfigurable Intelligent Surface (RIS)

D

RIS controller

Incidence ray

Reflection ray

Figure 2.4: Typical IRS-assisted wireless system, based on [132].

RIS technology has emerged as a new beyond MIMO paradigm for 6G to noticeably improve the

performance of post-5G networks in terms of Spectrum Efficiency (SE) and Energy Efficiency (EE)

[132]. RIS is a meta-surface that consists of a large number of low-cost passive reflecting electronic

units that can be programmed to alter the electromagnetic fields in order to obtain favorable envi-

ronments. RIS’s element can adaptively adjust the amplitude reflection and/or the phase shift of the

incident signals in a customizable way. Unlike other comparable technologies, such as relays and

MIMO beamforming, RIS technology does not need any power source and complex encoding and

decoding methods. These programmable features make RISs attractive to be integrated into the

infrastructure of beyond 5G networks [133].

A typical RIS-based SISO communication scheme consists of one source (S), one RIS with n reflect-

ing elements, and one destination (D), where S and D are equipped with one antenna, as illustrated

in Fig. 2.4. In this setup, S communicates with the D via RIS technology. By assuming that the phase

shifts induced by the composite fading channels are available at the RIS, the reflecting elements’

phases can be set so that the signals can be combined coherently at the destination side. Neverthe-
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less, the perfect phase estimation of the reflection phases is unfeasible in practice. Therefore, one

contribution of this thesis is to study the impact of imperfect phase estimation on the communications

system’s secrecy performance through an RIS technology.

It is worth mentioning that, the assumption in Fig. 2.4 related to neglecting the direct link between the

source and the receiver is because one of RIS technology’s key uses is to overcome NLoS scenarios

[134]. Furthermore, it is important to rule out that very recently, the work in [135] provides channel

modeling formulations to analyze the performance of RIS-assisted communications in the existence

of a direct link between the transmitter and receiver sides. These results will undoubtedly bring a

broad study of RIS-aided communications for LoS scenarios. Finally, it is worth highlighting that,

this work will focus on the PLS analysis of RIS-assisted wireless communications assuming NLoS

scenarios.
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3 SUM AND RATIO OF RANDOM VARIABLES

In this chapter, analytic closed-form expressions for (i) the sum of both classic and generalized RVs;

and (ii) the ratio of two RVs taken from α-µ distributions are derived. Specifically, two approaches

are introduced for the sum of RVs. In the first, the exact distribution of the sum of Nakagami-m RVs is

approximated by a mixture of two Nakagami-m RV, where the adjustment parameters are estimated

using the EM algorithm. For the second approach, the chief statistics of the sum of generalized RVs

are approximated by using another generalized RV in which the fit parameters are calibrated through

the asymptotic matching method. Concerning the ratio of two α-µ RVs, the exact PDF, CDF and MGF

are derived in terms of the univariate Fox H-function. Based on these results, a practical application

example in PLS over α-µ fading channels is also provided.

3.1 SUM OF RANDOM VARIABLES

Before tackling the proposed approximations, the formulation of the problem of the sum of RVs and

two classical frameworks to obtain the exact PDF of a sum of independent RVs are revisited. In the

first approach, the exact PDF emerges as the convolution of the individual PDFs. For the second

method, the sum PDF arises from the FT of the product of the marginal CFs. Furthermore, it is

essential to mention that computing the exact sum PDF even for classical distributions is challenging.

3.1.1 Problem Formulation and Exact Solutions

3.1.1.1 Formulation

Let R be the sum of an arbitrary number M of i.n.i.d. fading (non-negative) RVs Ri [49]

R =

M∑

i=1

Ri. (3.1)

Here, it is considered that, each summand Ri can follow a generalized or classic fading model. In

particular, two cases are addressed: (i) Ri follows a Nakagami-m distribution, and (ii) Ri can be

taken from α-µ, κ-µ, η-µ, and κ-µ shadowed models. The goal is to find, for any given sum, a
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good approximation to the PDF of R or, equivalently, to its CDF. Next, the conventional analytical

frameworks to obtain the exact PDF solution are reviewed.

3.1.1.2 Exact Solution Framework

As mentioned earlier, the exact mathematical evaluation for the PDF of the sum of independent RVs

can be achieved by two means. Therefore, these standard procedures are introduced in the following.

Convolution of Densities and Brennan’s Integral: The PDF and CDF of R can be computed as

the convolution of the marginal PDFs of Ri. Alternatively, when the summands are non-negative

RVs (like in our case of fading envelopes), it is possible to reformulate the sum PDF by means of a

geometric approach, as proposed by Brennan in [136]. Both the convolution and Brennan’s approach

are written in a similar fashion, as an multiple-fold integral formula in terms of the product of marginal

PDFs. Hence, the resultant PDF and CDF of R in (3.1) can be written as [136]

fR(r) =

∫ r

0

∫ r−rM

0

...

∫ r−
∑

M

i=3
ri

0

fR1,...,RM
(r −

M∑

i=2

ri, r2, ..., rM )dr2...drM−1drM , (3.2a)

FR(r) =

∫ r

0

∫ r−rM

0

...

∫ r−
∑

M

i=3
ri

0

∫ r−
∑

M

i=2
ri

0

fR1,...,RM
(r1, r2, ..., rM )dr2...drM−1drM . (3.2b)

As pointed out in [136], (3.2) is valid even for correlated summands. For this case, the correlation

matrix is included the joint PDF of R1, . . . , RM . In our context, since the summands are assumed to

be independent, the joint PDF in (3.2) reduces to the product of marginal PDFs [136]

fR1,...,RM
(r1, ..., rM ) =

M∏

i=1

fRi
(ri). (3.3)

Regrettably, the multi-fold integral in (3.2) is quite as frightful as it appears, and its evaluation presents

a closed-form solution only for particular fading models. The computation of (3.2) through numerical

integration using standard computing software such as Mathematica and Matlab can be unfeasible

and very time-consuming for the sum of more than five RVs.

Product of Characteristics Functions: The CF of Ri is presented as the Inverse FT of its PDF

as: Φi(ω) , E[exp(jωRi)] [137]. Knowing that in the time domain the PDF of R is given as the

convolution of individual PDFs, the ΦR(·) of R in the frequency domain can be achieved through the

product of marginal CFs of Ri as [137]

ΦR(ω) =

M∏

i=1

ΦRi
(ω). (3.4)
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Consequently, the exact PDF in (3.2a) can be obtained from its CF by using Fourier transform [137]

fR(r) =
1

2π

∫ +∞

−∞

M∏

i=1

ΦR(w) exp (−jωr) dω. (3.5)

The downside of this solution is that closed-form expressions for the marginal CFs, i.e., ΦRi
(·), are

known only for a few fading models. For instance, the CF of a branch Ri that follows a Nakagami-m

PDF is given by [120]

ΦRi
(ω) = 1F1

(
mi;

1

2
; −Ωiω

2

4mi

)
+ jω

Γ
(
mi + 1

2

)

Γ (mi)

√
Ωi

mi
1F1

(
mi;

1

2
; −Ωiω

2

4mi

)
. (3.6)

Based on this, a closed-form solutions of (3.4) exist only for particular cases (e.g., Rayleigh and

Nakagami-m cases). Furthermore, the marginal CFs are often rather oscillatory functions, especially

for the CFs available in generalized fading models. This fact makes the numerical evaluation of (3.4)

prone to convergence issues and impracticable as the number of summands increases.

For informative purposes, an alternative approach to compute the exact sum PDF that is not covered

in this section is that (3.1) can also be obtained in terms of the marginal MGFs — the Laplace

Transform (LT) of the marginal PDFs. The MGF of R is the product of the MGFs of Ri, the inverse

LT of which gives the PDF of R. Although the MGF approach avoids the oscillatory issues of the

CF approach, the approach still deals with the inverse LT that is hardly computed in closed-form,

requiring as before numerical routines.

3.1.2 Nakagami-m Approximation Approach

Here, the sum of M i.n.i.d. Nakagami-m RVs is approximated by using a mixture of two Nakagami-m

RVs. For this sum, the exact distribution R can be calculated with the help of (3.1), where each

summand Ri follows a Nakagami-m distribution. From (2.24), Ri can be rewritten as [35]

fRi
(r;θi) =

2mmi

i r2mi−1

Γ(mi)Ω
mi

i

exp

(
−mir

2

Ωi

)
, (3.7)

where θi = (Ωi,mi) is the vector of parameters corresponding at the i-th branch of the sum[1]. Here,

the goal is to find a good approximation to the PDF of R. To understand the motivation behind the

proposed approximation, a theoretical background is introduced below.

[1] Through this section, bold typeface symbols represent vectors.
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3.1.2.1 Background

This section introduces a theoretical basis concerning the EM algorithm and the Monte Carlo (MC)

approach. These methods are required to calibrate the parameters of the Nakagami-m mixture

model.

Monte Carlo Method: MC simulations describe any technique of computation that uses a large

number of pseudo-random samples to achieve a certain result. They are often the only practical way

to evaluate mathematical problems and they are useful when it is difficult or unfeasible to use other

mathematical tools. MC methods are mainly employed in three distinct problem classes: numerical

integration, optimization and generating samples from probability distributions [138]. For the problem

dealt in this work, the sum of generalized RVs given by multidimensional integrals can easily be

translated from the continuous multiple integrals to the discrete sum of pseudo-random samples by

using the MC method. Therefore, the sample space of the observations of the resulting PDF R

in (3.1) can be expressed by

X =

M∑

i=1

Xi. (3.8)

where each pseudo-random sequence Xi contains a vector of n samples that follows a Nakagami-m

distribution. To generate sequences of random numbers needed in (3.8), several mathematical meth-

ods have been proposed in [139]. In addition, the random number generation routines in Wolfram

Mathematica and Matlab called RandomVariate [140], and makedist [141], respectively, implement

fast algorithms to obtain Nakagami-m samples. So, for our approximation, these tools are employed.

Alternatively, after a careful study of the works reported on developing of approximate expressions

[142]–[144] to generate Xi having Nakagami-m distribution, this research work uses the approach

in [144], due to its easy implementation in any standard computer language. Having mentioned the

two ways of obtaining the desired sequence Xi, the estimation of the sample size in MC simulations

is explained in detail below.

As mentioned previously, the main idea on MC simulation is to create series of experimental sam-

ples using pseudo-random numbers. Hence, it is necessary to establish the appropriate number of

samples that ensures a good accuracy in the results. For this purpose, according to the central limit

theorem, the statistics such as mean (µ), and standard deviation (σ) can be used through the coeffi-

cient of variation (CV = σ
µ ) as an indicator of estimation of iterations when the number of samples is

large enough [145]. Consequently, the coefficients of variation are depicted in Fig 3.1, as a function

of the number of MC realizations from the whole set of 30.000 MC simulations in the sum of six i.n.i.d.

Nakagami-m variates. This figure also reports an estimate about the number of simulations required

to improve the accuracy of predictions in MC method. Therefore, based on Fig 3.1, 20.000 samples

for each Xi for the MC simulations are used.
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Monte Carlo Method
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Figure 3.1: Coefficient of variation for the PDF of the sum of six i.n.i.d. Nakagami-m variates with
parameters Ωi = 1, and (m1,m2,m3,m4,m5,m6) = (0.5, 0.7, 0.9, 1, 1.5, 2).

Expectation Maximization Algorithm With Mixture Model: EM is a iterative method that can

be used to fit a mixture model of a parametric PDF. In the EM algorithm, it is assumed that the

approximate PDF of (3.1) can be modeled as a weighted sum of other p numbers of PDFs. The

parameters of those PDFs can be estimated using n samples taken from the distribution of X, where

(p << n). EM maximizes the likelihood function of the mixture respect to the weight coefficients

using the provided statistical samples. Therefore, EM with mixture model can be defined as in [146]

by

fX(x;Ψ) =

p∑

i=1

ωiφi (x;θi) , (3.9)

where ωi, i ∈ {1, . . . , p} denote the mixture weights, and φi (x;θi) represents the density of the i-

th mixture component of the mixture model. An important constraint on this estimation is to have
∑p

i=1 ωi = 1, and 0 ≤ ωi ≤ 1 to satisfy the unity integral of (3.9). Let Ψ = {ω1, . . . , ωp−1,θ1, . . . ,θp}
be the set of all unknown parameters of the mixture model, where θi is a vector containing the

unknown parameters of the i-th component density. Next, in the mixture model with EM procedure,

one starts with any feasible values of θi, and ωi, then the parameters, and the weighting coefficients

are updated in each iteration by alternating between the following two steps until a convergence

condition is met:

Expectation step (E step): To establish notation, let Ψ(k) denotes the current estimate of Ψ after the

k-th iteration of the EM algorithm. This stage evaluates the k-th responsibility value τ (k)
ij that the data

point xj ∈ X (obtained from (3.8)) belongs to the i-th weighted PDF, given the current parameter

estimates ωi, and θi. Using Bayes’ Rule, this responsibility can be computed as in [147] by

τ
(k)
ij =

ωiφi

(
xj ;θi

)
∑p

l=1 ωlφl

(
xj ;θl

) , i = 1, 2, . . . , p, j = 1, 2, . . . , n , (3.10)

35



where p is the number of weighted PDFs, and n is the whole set of samples. Maximization step

(M step): On the (k + 1)-th iteration of the M-step, the current estimate of Ψ, named Ψ
(k), is up-

dated to Ψ
(k+1). The new parameters Ψ

(k+1) are estimated by maximizing the log-likelihood func-

tion L
(
X | Ψ

)
of each distribution φi (x;θi) weighted by the responsibilities, from a sample data set

X =
{
xj

}n

j=1
obtained through the MC method. So, the L

(
X | Ψ

)
function is defined as in [147] by

L
(
X | Ψ

)(k+1)
=

n∑

j=1

p∑

i=1

τ
(k)
ij log

[
ωiφi

(
xj ;θi

)]
. (3.11)

Let θit denotes the t-th element of the parameter vector θi. The EM updating parameters are derived

from the gradient of L
(
X | Ψ

)
equal to zero. Thus, the maximum likelihood estimator of the element

θit ∈ θi ∈ Ψ is given by:

∂L(X|Ψ)

∂θit

(k+1)

=
n∑

j=1

τ
(k)
ij

∂

∂θit

log
[
ωiφi

(
xj ;θi

)]
= 0. (3.12)

The estimate of the element ωi ∈ Ψ, is given by

∂L(X|Ψ)

∂ωi

(k+1)

=

n∑

j=1

τ
(k)
ij

∂

∂ωi

log
[
ωiφi

(
xj ;θi

)]
= 0, (3.13)

where, the weighting coefficients ωi can be updated as in [147] by:

ω
(k+1)
i =

∑n
j=1 τ

(k)
ij

n
. (3.14)

Typically, the iterations in the EM procedure are performed until the changes in the relative difference

of the PDFs parameters are less than some pre-established threshold ǫ. It is worth mentioning

that, the accuracy of the EM algorithm depends both on the threshold and the number of weighted

PDFs. Furthermore, the time for convergence increases on two factors; as the number of mixture

distributions rises and with decreasing of ǫ. Interested readers can revise [148] for further guidance

about convergence and the accuracy of the EM algorithm.

3.1.2.2 Proposed Approximation

Herein, this research proposes to approximate the PDF of R given in (3.1) by two weighted envelopes

given in (3.9), for which appropriate parameters must be determined to render this method a good

approximation. The development of such an approach is derived in detail below.

In our approach all φi are Nakagami-m density functions given in (3.7), hence, all θi = (Ωi,mi). Now,

putting (3.7) in (3.12) for Ωi ∈ θi, it follows that
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n∑

j=1

τ
(k)
ij

∂

∂Ωi

log


ωi2m

mi

i x2mi−1
j

Γ(mi)Ω
mi

i

exp

(
−
mix

2
j

Ωi

)
 = 0. (3.15)

Solving the equality (3.15), yields

n∑

j=1

τ
(k)
ij

[
mix

2
j

Ω2
i

− mi

Ωi

]
= 0

∑n
j=1 τ

(k)
ij mix

2
j

Ω2
i

=

∑n
j=1 τ

(k)
ij mi

Ωi
. (3.16)

From (3.16), the EM updating equation to estimate the Ωi posteriori (i.e., Ω
(k+1)
i ) is given by

Ω
(k+1)
i =

∑n
j=1 τ

(k)
ij x2

j
∑n

j=1 τ
(k)
ij

. (3.17)

Note that in (3.17), the Ω
(k+1)
i value is updated in (k+1)-th iteration of the M-step until a convergence

condition is reached (i.e., the parameters’ variation between k − 1, and k iteration is lower than a

certain threshold).

Likewise, substituting (3.7) in (3.12) and solving for mi ∈ θi, the equation to estimate mi, can be

expressed as follows

n∑

j=1

τ
(k)
ij

∂

∂mi

log


ωi2m

mi

i x2mi−1
j

Γ(mi)Ω
mi

i

exp

(
−
mix

2
j

Ωi

)
 = 0. (3.18)

After some mathematical manipulations in (3.18), it follows that

n∑

j=1

τ
(k)
ij −

n∑

j=1

τ
(k)
ij x2

j

Ωi︸︷︷︸
+

n∑

j=1

τ
(k)
ij log(mi) −

n∑

j=1

τ
(k)
ij log(Ωi) +

n∑

j=1

τ
(k)
ij log(x2

j ) −
n∑

j=1

τ
(k)
ij ψ(mi) = 0.

(3.19)

It is worth noting that the underlined Ωi in (3.19) refers to (3.17). Thus, by replacing Ωi from (3.17) in

second term of (3.19), yields −∑n
j=1 τ

(k)
ij . Therefore, the simplified expression is given by

n∑

j=1

τ
(k)
ij

[
log(Ωi) − log(x2

j )
]

=

n∑

j=1

τ
(k)
ij

[
log(mi) − ψ(mi)

]
. (3.20)

Rearranging (3.20) with respect to mi, it obtains that

log(mi) − ψ(mi) =

∑n
j=1 τ

(k)
ij

[
log(Ωi) − log(x2

j )
]

∑n
j=1 τ

(k)
ij

. (3.21)
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Now, (3.21) can be rewritten as

log(mi) − ψ(mi) = ∆k
i , (3.22)

where

∆k
i =

∑n
j=1 τ

(k)
ij




h︷ ︸︸ ︷
log(Ωi) − log(x2

j )




∑n
j=1 τ

(k)
ij

. (3.23)

Here, note that (3.23) requires knowledge of Ωi, which was computed previously by using (3.17). In

addition, notice that the term h in (3.23) is the difference of arithmetic and geometric means, hence

∆k
i will always assume only positive values[2]. Now, to find the mi parameter, it is necessary to solve

the nonlinear equation (3.22), which does not lead to a closed-form solution. Because of this, the

term ψ(z) is approximated by an asymptotic expansion defined as in [149, Eq. (6.3.18)] by

ψ(z) ∼ log(z) − 1

2z
− 1

12z2
+

1

120z4
− 1

252z2
+ · · ·. (3.24)

By using the second order approximation ψ(z) ≈ log(z) − 1
2z − 1

12z2 into (3.22), and solving the

quadratic equation for mi, this parameter is obtained in a straightforward manner by

m
(k+1)
i =

1 +

√
1 +

4∆k
i

3

4∆k
i

. (3.25)

Due to the fact that the parameter mi only assumes positive values, the negative solution is dis-

carded. Furthermore, it is necessary that mi > 0. Therefore, since both h and the responsibilities τij

are positive in (3.23), the non-negativity of ∆k
i is guaranteed in (3.25). For more information about

non-negative property of the logarithmic ratio of the arithmetic mean to the geometric mean in (3.23),

the reader can refer to [149, Eq. (3.2.1)].

Algorithm 1 depicts our Nakagami-m Mixture Model based on EM. Here, note that both the respon-

sibility τk
2j and the weighting coefficient ωk+1

2 are computed from the difference between the unit and

the τk
1j , and ωk+1

1 parameters, respectively. This is because the algorithm uses the EM-NMM for mix-

ing two Nakagami-m distributions, so it turns out that ω1 + ω2 = 1. In addition, the relative tolerance

method is employed as a stop criterion. Also, this approach computes the difference between the

new estimation and the old one for each of the variables, and divide it by the previous (old) value

of the variable. The algorithm stops when a relative tolerance in both variables is lower than the

threshold. For our approximation, a threshold value of 1 × 10−3 is considered to ensure that there

is no significant change between the current and the old parameter estimate over successive iter-

ations. Finally, as will be shown later, the proposed approximation can directly be extended to the

performance analysis evaluation in which sum of RVs occurs.

[2] As will be seen later, the non-negativity of ∆k
i is necessary to be able to solve the equation in (3.22)
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Algorithm 1: EM procedural algorithm to estimate ωi, Ωi, and mi of Nakagami-m
Finite Mixture weighted PDFs

Input: observed data → X, threshold → ǫ, ω1, Ωi, and mi, for i = 1, 2.
Output: ωi, Ωi, and mi, for i = 1, 2.
ω2 = 1 − ω1;
k = 1;
n = length(X);
while ΛΩi && Λmi < ǫ do

E step:
for j = 1; j < n; j++ do

P1j= φ1

(
Xj ; Ωk

1,m
k
1

)
;

P2j= φ2

(
Xj ; Ωk

2,m
k
2

)
;

τk
1j =

ωk
1

×P1j

ωk
1

×P1j+ωk
2

×P2j
;

τk
2j = 1 − τk

1j ;

end
M step:

∆k
1 =

∑n

l=1
τk

1l(log(Ωk
1

)−log(X2

l
))∑n

l=1
τk

1l

;

∆k
2 =

∑n

l=1
τk

2l(log(Ωk
2

)−log(X2

l
))∑n

l=1
τk

2l

;

Ωk+1
1 =

∑n

l=1
τk

1l
×X2

l∑n

l=1
τk

1l

;

Ωk+1
2 =

∑n

l=1
τk

2l
×X2

l∑n

l=1
τk

2l

;

mk+1
1 =

1+

√
1+

4∆k
1

3

4∆k
1

;

mk+1
2 =

1+

√
1+

4∆k
2

3

4∆k
2

;

ωk+1
1 =

∑n
l=1 τ

k
1l/n;

ωk+1
2 = 1 − ωk+1

1 ;

k = k + 1;

end
Stop Criterion Notation:
Λmi =| (m

(k+1)
i -m(k)

i )/mk
i |

ΛΩi =| (Ω
(k+1)
i -Ω(k)

i )/Ωk
i |
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3.1.2.3 Application: Average Bit Error Probability

ABEP approximations

As shown in section (2.3.3.1), the exact solution of the ABEP for multibranch combining receivers

involves multiple integrals in its evaluation. Therefore, a simple and tight approximations of the ABEP

for coherent and non-coherent modulation schemes is introduced. For this purpose, one can replace

the exact PDF fR(r) in (2.60) by the approximate PDF fX(x;Ψ) obtained in (3.9) and Pe(r) by (2.62)

and (2.63) for non-coherent and coherent modulations, respectively. Next, the ABEP approximations

for non-coherent and coherent modulations are given by the following proposition.

Proposition 1. The ABEP for non-coherent and coherent modulations of EGC multibranch receivers

can be obtained as (3.26) and (3.27), respectively.

Pe ≈
2∑

i=1

ωi

2

(
mi

Ωi

)mi

(
Ebg
N0

+ mi

Ωi

)mi
, (3.26)

Pe ≈
2∑

i=1

ωiΓ(2mi) 2F1

(
mi,

1
2 +mi; 1 +mi; − 1

ΩigEb
miN0

)

Γ(mi)
(

4ΩigEb

miN0

)mi
. (3.27)

Proof. The proof is provided in Appendix A.1.

Note that our ABEP formulations in terms of mathematical complexity are as treatable as those

approaches that use a single distribution for the approximation to the sum of RVs, because NMM is

a linear combination of independent Nakagami-m distributions.

High and Low SNR Regime Analysis In order to simplify the SNR analysis, the main concern in this

section is to derive both asymptotic closed-form expressions for high SNR, and formulations at low

SNR regime for Pe shown in (3.26) and (3.27). It is worth mentioning that the asymptotic analysis

has been widely studied in both Outage Probability and Bit Error Probability at high SNR regime

(see, for example, [150], [151], and the references therein). So, this approach mainly focuses on

the asymptotic analysis in the high SNR regime for the ABEP in both coherent and non-coherent

modulations. Furthermore, the expressions for the aforesaid modulations in the low SNR regime are

also derived. These results are presented as follows.

Proposition 2. The ABEP expression for non-coherent and coherent modulations in low SNR regime

can be obtained as (3.28) and (3.29), respectively.

Pe ≈
2∑

i=1

ωi/2

1 + gΩi

(
Eb

N0

)
+

g2(mi−1)Ω2
i

2mi

(
Eb

N0

)2 , (3.28)
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Pe ≈
2∑

i=1

ωiΓ(2mi)
[

Γ( 1
2 )

Γ(mi+ 1
2 )

]

Γ(mi)4mi (z + 1)
mi

. (3.29)

Proof. The proof is provided in Appendix A.2.

Proposition 3. The ABEP expression for non-coherent and coherent modulations in high SNR

regime can be formulated as (3.30) and (3.31), respectively.

Pe ≈ 1(
Eb

N0

)m

[
ω

2

(
m

gΩ

)m
]
, (3.30)

Pe ≈ 1(
Eb

N0

)m




ωΓ(2m)

Γ(m)
(

4Ωg
m

)m

Γ(1 +m)


 . (3.31)

where m is equal to the lower value between the parameters m1, and m2, i.e., m = min{m1,m2}.

Correspondingly, the coefficients ω and Ω are associated with the m parameter index that meets the

aforementioned condition.

Proof. The proof is provided in Appendix A.3.

Note that for the ABEP expression for coherent modulations in low and high SNR regimes, the hyper-

geometric function, i.e., 2F1 (·, ·; ·; ·) disappears concerning the ABEP approximation given in (3.27).

This fact makes such formulations mathematically more treatable than the proposed ABEP approxi-

mation.

Remark 1. In the high-SNR region, the ABEP can be characterized by the diversity order Gd and

the coding gain Gc. Therefore, from (2.7), it is defined P∞
e ≈ (Gc

Eb

N0
)−Gd . In this context, based

on (3.30), it can be inferred that Gc = ( gΩ
m )( ω

2 )−1/m, and Gd = m. Likewise, from (3.31), it results

that Gc =

[
ωΓ(2m)

Γ(m)
(

4gΩ
m

)m

]−1/m

, and Gd = m. These parameters play a fundamental role in designing

wireless communication system. For instance, the diversity order Do determines the slope of the

ABEP versus average SNR curve, at high SNR, in a log-log scale. Moreover, the coding gain Gc (in

dB) determines the shift of the curve in SNR relative to a benchmark ABEP curve of ( Eb

N0
)−Gd .

3.1.2.4 Numerical Examples and Discussions

In this section, in order to check the accuracy of our proposed approximations, numerical examples

for EGC receivers over Nakagami-m fading channels in terms of ABEP are presented. The exact

sum statistics have been computed via numerical integration with the use of (3.2a) and (3.5). Like-

wise, the exact solutions for the ABEP in EGC reception are also plotted via numerical integration
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Figure 3.2: PDF of the sum of twenty and thirty n.i.i.d. Nakagami-m RVs. For M = 20, mi = 0.5 for
i = 1 to 3, mi = 1 for i = 4 to 6, mi = 2 for i = 7 to 9, mi = 2.5 for i = 8 to 12, mi = 3 for i = 13 to 16,
and mi = 3.5 for i = 17 to 20. For M = 30, mi = 0.5 for i = 1 to 6, mi = 0.7 for i = 7 to 12, mi = 0.9
for i = 13 to 18, mi = 1 for i = 19 to 24, and mi = 1.5 for i = 25 to 30.

from (2.60) with their respective substitutions. The comparison of our NMM approximation against

the approaches given in [48] and [49] for the sum of Nakagami-m RVs is also shown in the figures. In

all the cases of this section, it is employed envelopes with unit-power, and the samples values of mi

have been selected to cover a wide range of fading. It is noteworthy that, here, only the i.n.i.d. cases

are plotted, because for the i.i.d. cases, the proposed approximations are practically indistinguishable

from the exact solutions.

Firstly, to demonstrate the ability of NMM approach to evaluate the expressions for large M , non-

identical summands are considered in Fig. 3.2, where the number of RV is set to 20, and 30. For

these scenarios, the corresponding fading parameters are given by: Case I (M = 20): mi = 0.5 for

i = 1 to 3, mi = 1 for i = 4 to 6, mi = 2 for i = 7 to 9, mi = 2.5 for i = 8 to 12, mi = 3 for i = 13

to 16, and mi = 3.5 for i = 17 to 20, and Case II (M = 30): mi = 0.5 for i = 1 to 6, mi = 0.7 for

i = 7 to 12, mi = 0.9 for i = 13 to 18, mi = 1 for i = 19 to 24, and mi = 1.5 for i = 25 to 30. As

can be seen for M = 20, the differences among the exact, the approach of [49], the proposal of [48],

and our approximate curves are almost imperceptible. Notice that the small difference are reduced

even further as M increases. On the other hand, for the case of M = 30, the results of the proposed

approximate in [48] (e.g., 16 < r < 18) are slightly poorer than the others.

Next, Figs. 3.3a and 3.3b show the ABEP against the average output SNR for BFSK (coherent), and

DBPSK (non-coherent) modulations for EGC receivers, respectively. For both figures, it is considered

three branches (i.e., M = 3) with different values of mi to cover the special cases of fading in

the Nakagami-m distribution as follows: Case III: (m1,m2,m3) = (0.5, 0.7, 0.9), Case IV (Rayleigh):

(m1,m2,m3) = (1, 1, 1), and Case V: (m1,m2,m3) = (1.5, 2, 2.5). Note that when the signals have
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smaller fading severities, the proposed NMM approximation, and the approach in [49] are excellent.

In the opposite scenario, i.e., signals with greater fading severities, there are a small gap regarding

the exact solution; however, both approximate solutions are still very good. Therefore, the behavior

of our approaches is very accurate in all of three cases, and outperforms the approximation given

in [48]. In short, the proposed approximation presents a similar behavior to the results in [49] for all

fading scenarios considering the same order of diversity (i.e., M = 3) in all the cases shown.

Then, the ABEP at the output of an ECG combiner with M = 4, 6, and 8 diversity branches is

analyzed. Figs. 3.4a and 3.4b show the results of these cases for coherent and non-coherent

modulation schemes respectively. Here, in order to demonstrate the robustness of the proposed

approximations, it is considered only small values of fading. Based on this, for both figures, the cor-

responding fading parameters are given by: Case VI: (m1,m2,m3,m4) = (0.5, 0.7, 0.9, 1), Case VII:

(m1,m2,m3,m4,m5,m6) = (0.5, 0.7, 0.9, 1, 1.5, 2), and Case VIII: (m1,m2,m3,m4,m5,m6,m7,m8) =

(0.5, 0.7, 0.9, 1, 1.5, 2, 2.5, 3). As can be seen in all cases, the approximations achieved with our MNM

agree completely with the exact solution. Here, it is worth mentioning that in all scenarios our ap-

proximations behave similarly to those presented in [49] for low values of diversity, but slightly worse

than that given by [49] as the number of branches increases. The reason for this small difference

is because the α−µ distribution used in [49] to approximate the sum of Nakagami-m RVs has one

degree of freedom more than Nakagami-m. On the other hand, the approach of [48], although good,

again is notably outperformed by our proposal. Moreover, from both figures, it is interesting to note

that the ABEP performance improves rapidly for high values of branches or high values of SNR at

output receiver, while for low values of diversity, the ABEP increases significantly.

Henceforth, only the approach in [49], and our approximations are presented. The reason for this

decision is that these approximations are perfectly matched with the exact solutions as can be seen

in the previous analysis (see, for instance, Figs. 3.3 and 3.4). Figs. 3.5 and 3.6 denote the SNR

regime analysis for both coherent and non-coherent modulations, considering the cases VI, VII,

and VIII previously presented. In Figs. 3.5b and 3.6b, the ABEP at high SNR is plotted for co-

herent and non-coherent modulations respectively. It is shown that the asymptotic performances

are well aligned to both the approach in [49], and our approximations. As expected, the ABEP de-

creases with the increase of M . In the same figures, the diversity order, theoretically defined as

D = limSNR→∞
[
− log(Pe)/ log(SNR)

]
[3] [152] is also shown as a function of the SNR for different

values of M . As depicted in these figures, as the SNR goes to infinity, the diversity order D ap-

proaches Gd = min{m1,m2} (with M = {4, 6, 8}), verifying the mathematical results presented in

Remark 1.

[3] It is worth noting that the term Pe in the expression for diversity order D refers to (3.28), and (3.29).
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(a) Average Bit Error Probability for coherent Binary Frequency-Shift Keying of EGC receivers operating on
M = 3 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.

+ +
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Exact

Approximation in [48]

+ Approximation in [49]

● Proposed Approximation

m1 = 0.5, m2 = 0.7,

m3 = 0.9

m1 = 1, m2 = 1, m3 = 1

m1 = 1.5, m2 = 2,

m3 = 2.5

0 2 4 6 8 10 12 14
10-9

10-7

10-5

0.001

0.100

Signal-to-Noise Ratio [dB]

A
B
E
P

(b) Average Bit Error Probability for Differential Binary Phase-Shift Keying of EGC receivers operating on M = 3
n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.

Figure 3.3: Average Bit Error Probability for coherent and non-coherent modulations of EGC re-
ceivers over M = 3 Nakagami-m RVs.
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(a) Average Bit Error Probability for coherent Binary Frequency-Shift Keying of EGC receivers operating on
M = 4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.
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(b) Average Bit Error Probability for Differential Binary Phase-Shift Keying of EGC receivers operating on M =
4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.

Figure 3.4: Average Bit Error Probability for coherent and non-coherent modulations of EGC re-
ceivers over M = 4, 6, and 8 Nakagami-m RVs.
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Tabla 3.1: Comparison of computational efforts between the exact and approximate solutions.

Average Elapsed Time (sec.)

Statistic Exact Proposed Reduction
Solution Approximation Percentage (%)

PDF

M = 20 609.90 2.44 99.60
M = 30 2,229.67 2.63 99.88

ABEP

M = 3 217.31 2.14 99.02
M = 4 786.73 2.17 99.72
M = 6 49,281.55 2.19 100
M = 8 277,555.92 2.24 100

Regarding the proposed expressions at low SNR regime, the Figs. 3.5a and 3.6a show the ABEP for

non-coherent and coherent modulation schemes respectively. Note that the observed performances

of the formulations for this scenario lose their accuracy with respect to the solutions given in (3.28)

and (3.29). However, it is encouraged the use of these latter expressions, since they are mathe-

matically as treatable as those solutions derived for low SNR regime. In summary, the results show

the expected behavior, that is, the ABEP metric improves by increasing the diversity order and/or

improving the fading/shadowing conditions. It is worth mentioning that the carried out tests for other

fading conditions showed an excellent fitting in all the cases investigated.

For informative purposes, the Fig. 3.7 presents the computational consuming time of all the ap-

proaches shown above. In this context, to circumvent very long simulation times in the evalua-

tion of the exact solution, parallel processing has been used with Wolfram Mathematica. The box

plots in Figs. 3.7a and 3.7b denote the Average elapsed time to obtain the combined envelope for

M = {20, 30}, and the ABEP for M = {4, 6, 8} in EGC respectively. From both figures, the reader

can observe that approach in [48] corresponds to the fastest envelope computation, but certainly its

performance is the worst among all approximations. Likewise, the approach in [49] shows an excel-

lent computational speed in all cases, and its behavior is as good as the proposed approximation in

this work. Furthermore, it is clear in both figures that the average times of the approaches in [48]

and [49] tend to grow rapidly with the number of branches. For instance, the average elapsed times to

compute the PDF for M = 20, and M = 30 RVs for both the approach in [49], and our approximation

are (Case M = 20: 1.51 sec., and 2.23 sec.), and (Case M = 30: 7.45 sec., and 2.58 sec.), respec-

tively. So, it is clear that the simulation time of our approximation for the complete set of examples is

practically constant in the range of 2.2-2.6 seconds, being independent of the number of RVs.

In order to verify the speed of real-time computations, a complete summary between the exact and

the proposed approximation has been made in Table 3.1 for both the resulting PDF and the ABEP in

EGC technique. It is worth noting that, our proposed method reduces the computational effort above

99% in all the illustrated examples with respect the exact solution.
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(a) Low-SNR analysis of Average Bit Error Probability for Differential Binary Phase-Shift Keying of EGC receivers
operating on M = 4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.
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(b) High-SNR analysis of Average Bit Error Probability for coherent Binary Frequency-Shift Keying of EGC
receivers operating on M = 4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying mi.

Figure 3.5: SNR regime analysis of the Average Bit Error Probability for coherent and non-coherent
modulations of EGC receivers over M = 4, 6, and 8 Nakagami-m RVs.
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(a) Low-SNR analysis of Average Bit Error Probability for coherent Binary Frequency-Shift Keying of EGC re-
ceivers operating on M = 4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying
mi.
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(b) High-SNR analysis of Average Bit Error Probability for Differential Binary Phase-Shift Keying of EGC re-
ceivers operating on M = 4, 6, and 8 n.i.i.d. Nakagami-m fading channels, assuming Ωi = 1, and varying
mi.

Figure 3.6: SNR regime analysis of the Average Bit Error Probability for coherent and non-coherent
modulations of EGC receivers over M = 4, 6, and 8 Nakagami-m RVs.

48



P.A. By [10] By [11] P.A. [] []

2.0

2.2

2.4

2.6

2.8

PDF APPROACH

S
ec

o
n

d
s

1

2

3

4

5

6

7

8

S
ec

o
n

d
s

M = 20

M = 30

P.A.= Proposed Approximation By [48] = Approximation in [48] By [49] = Approximation in [49]

PDF APPROACH

P. A. P. A.By [48] By [49] By [48] By [49]

(a) Average elapsed time to compute the resulting PDF for M = 20, and 30 n.i.i.d. Nakagami-m RVs.

P.A. By [11] P.A. By [10] By [49]

2.0

2.2

2.4

2.6

2.8

S
ec

o
n
d
s

0.05

0.10

0.15

0.20

0.25

M = 6

M = 8

P. A. = Proposed Approximation By [48] = Approximation in [48] By [49] = Approximation [49]

P. A. P. A.

ABEP APPROACH 

By [48]By [49]By [48]

(b) Average elapsed time to evaluate the ABEP of EGC receivers operating on M = 6, and 8 n.i.i.d. Nakagami-m
RVs.

Figure 3.7: Average elapsed time for both the PDF and ABEP in EGC varying the number of
branches.

49



Finally, the results of our approaches in the evaluation of both the PDF and the ABEP with large

M prove to be the fastest in real-time computations those presented in [48] and [49]. This fact,

makes our NMM proposal attractive in applications for which sum of RVs occur such as Multiple

Input Multiple Output (MIMO), Single Input Multiple Output (SIMO) among others.

3.1.3 Generalized Approximation Approach

Here, this work proposes a unified approach to approximate the PDF and CDF of the exact sum

given in (3.1), where Ri follows a generalized fading model. Specifically, given any chosen model,

the approximate solution’s parameters are fit by matching its asymptotic behavior around zero to

that of the exact sum. Based on this, this approach is called asymptotic matching. In addition, if

the approximate solution has three or more parameters to be calibrated, one or more moments of

the exact and approximate sum are also matched to one another (method well-known as MoM).

Before introducing the proposed approximation, both the statistical properties and the asymptotic

characterization of a generalized fading model are revisited.

3.1.3.1 Background Statistics

The asymptotic matching method can be applied to generalized fading models, including α-µ, κ-µ,

η-µ, κ-µ shadowed, among others. Without loss of generality, this work focuses on approximating

the sum of κ-µ RVs. However, the theoretical framework developed in this section can be used to

approximate the sum of any fading model mentioned above.

Summands’ Statistics Here, for a better understanding, the κ-µ fading model associated to the sum-

mands are introduced. From (2.30), the PDF of each κ-µ summand Ri in (3.1) is give by

fRi
(r) =

2µi(1 + κi)
1+µi

2 rµi

κ
µi−1

2
i Ω

µi+1

2
i exp(µiκi)

exp

(
−µi(1 + κi)r

2

Ωi

)
Iµi−1


2µir

√
κi(1 + κi)

Ωi


 . (3.32)

The n-th moment of Ri in (3.32) can be obtained as [127]

E[Rn
i ] =

Γ
(
µi + n

2

)
exp [−κiµi] Ω

n
2
i

Γ (µi)
[
(1 + κi)µi

]n/2 1F1

(
µi +

n

2
;µi;κiµi

)
. (3.33)

Summands’ Asymptotic Statistics Here, it is obtained Maclaurin series representations for the κ-µ

PDF. This representation is essential to the asymptotic matching approach. Assume that the PDF of

Ri has a Maclaurin series representation written as

fRi
(r) =

∞∑

n=0

ai,nr
bi,n

i , (3.34)
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in which bi,n is a monotonically increasing function with respect to n and the coefficients ai,n and bi,n

depend on the fading model used. Specifically, for the κ-µ case, the Maclaurin series representation

is given in the following proposition.

Proposition 4. The Maclaurin series coefficients ai,n and bi,n for κ-µ distribution are given by

ai,n =
2µi (1 + κi)

1+µi
2 (−1)n

κ
µi−1

2
i Ω

µi+1

2
i exp (µiκi) Γ (1 + n)

2
Γ (n+ µi)

(
µi(1 + κi)

Ωi

)n

µi

√
κi (1 + κi)

Ωi




2n+µi−1

(3.35a)

bi,n = 2(µi + 2n) − 1. (3.35b)

Proof. The proof is provided in Appendix B.1.

As shall become apparent, our asymptotic-matching approach turns out to depend solely on the

first term of the above series, i.e., on ai,0 and bi,0. This occurs because this term has the smallest

exponent in the series (= bi,0) and thus dominates the asymptotic behavior around zero, i.e., in the left

tail of the PDF. Recall that the PDF’s asymptote around zero governs the high-SNR performance of a

communication system operating over a channel modeled by that PDF, as shown in [117]. Therefore,

ultimately, the goal is to achieve a good fit at medium to high SNR.

Summands-to-Sum Asymptotic Mapping

Now, consider the Maclaurin series representation for the PDF of the exact sum R given in (3.1) as:

fR(r) =

∞∑

n=0

anr
bn . (3.36)

Here, the approach is interested in the first term alone, which rules the asymptotic behavior around

zero, i.e.,

fR(r) ≃ a0r
b0 . (3.37)

Next, closed-form expressions for a0 and b0 as a function of the coefficients ai,0 and bi,0 for the sum-

mands are derived. Since the PDF of R is given as the convolution of the individual PDFs of Ri, it

can be represented in terms of the corresponding Maclaurin series in (3.34) as

fR(r) =

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nM =0

a1,n1
rb1,n1 ⊗ a2,n2

rb2,n2 ⊗ · · · ⊗ aM,nM
rbM,nM . (3.38)

Also, it can be shown that, for each set of terms in (3.38), a1,n1
rb1,n1 , . . . , aM,nM

rbM,nM , the convolu-

tion among them results in a term with the same format, i.e.,
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a1,n1
rb1,n1 ⊗ · · · ⊗ aM,nM

rbM,nM =arb

∆
=a(n1,n2,...,nM )r

b(n1,n2,...,nM ) . (3.39)

Note that each term resulting from the convolution has contributions of all summands, so one can

express a and b as a function of n1, n2, ..., nM . As known, this convolution can be expressed as a

product in the Laplace domain, the inverse of which gives arb. By taking the Laplace transform of

each summand term in (3.39), it follows that

L
{
ai,ni

rbi,ni

}
=
ai,ni

Γ(1 + bi,ni
)

s1+bi,ni

. (3.40)

Therefore, from (3.40), (3.39) can be rewritten as

a r b = L−1





M∏

i=1

ai,ni
Γ(1 + bi,ni

)

s1+bi,ni





=

∏M
i=1 ai,ni

Γ(1 + bi,ni
)

Γ(M +
∑M

i=1 bi,ni
)
r(M−1)+

∑
M

i=1
bi,ni , (3.41)

so the coefficients a and b are obtained as

a =

∏M
i=1

[
ai,ni

Γ(1 + bi,ni
)
]

Γ
(
M +

∑M
i=1 bi,ni

) (3.42a)

b = (M − 1) +

M∑

i=1

bi,ni
. (3.42b)

Considering that each term bi,ni
is a monotonically increasing function with respect to ni, the smallest

value of b in (3.42b) occurs for n1 = n2 = · · · = nM = 0. Accordingly, a0 and b0 can be finally

calculated as

a0 =

∏M
i=1

[
ai,0Γ(1 + bi,0)

]

Γ
(
M +

∑M
i=1 bi,0

) (3.43a)

b0 = (M − 1) +

M∑

i=1

bi,0. (3.43b)

This result plays a pivotal role in our proposed approximation.

Summands-to-Sum Moment Mapping

As mentioned previously, if the approximate distribution has three or more parameters to be fit (e.g.,

κ-µ case), the n-th moment of the exact sum is needed. From [48, Eq. (6)], the n-th moment of R

can be expressed in terms of the individual moments of the summands as
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E[Rn] =
n∑

n1=0

n1∑

n2=0

· · ·
nM−2∑

nM−1=0

(
n

n1

)(
n1

n2

)
· · ·
(
nM−2

nM−1

)
E[Rn−n1

1 ]E[Rn1−n2
2 ] · · ·E[R

nM−1

M ], (3.44)

where the required individual moments E[Rn
i ] for the κ-µ case is given in (3.33).

3.1.3.2 Proposed Framework and Approximation

In this section, an approach that can be used to calibrate the distribution parameters of any candidate

statistical model expected to approximate a sum of i.n.i.d., non-negative RVs is presented. As seen

later, the proposed approach can be used when dealing with sums of κ-µ RVs.

Let R̃ be the RV whose PDF is assumed to approximate the PDF of the exact sum R. To avoid

confusion, R̃ refers to the approximate sum. In addition, let ã0r
b̃0 be the asymptote — i.e., the first

term of the Maclaurin series — of fR̃(r). The essence of our approach is to adjust the parameters of

fR̃(r) so that its asymptote matches that of fR(r), i.e., ã0r
b̃0 = a0r

b0 . This is the reason because the

approach is named asymptotic matching.

The asymptotic matching provides two equations to calibrate the parameters of a chosen approxi-

mate distribution: ã0 = a0 and b̃0 = b0. So these equations suffice when the approximate distribution

has only two parameters, such as the Weibull and Nakagami-m approximations. But certain approx-

imate distributions may have three or more parameters. For instance, the α-µ, κ-µ, η-µ approximate

distributions have three parameters each, namely and respectively, (α̃, µ̃, Ω̃), (κ̃, µ̃, Ω̃) , and (η̃, µ̃, Ω̃).

In these cases, an extra equation is needed to calibrate the parameters. Here, it is suggested that

this equation be obtained by matching a certain n-th moment of the approximate sum to that of the

exact sum, i.e., by forcing E[R̃n] = E[Rn], with n integer. It is noteworthy that, whereas the asymptotic

matching ensures an excellent fit — asymptotically perfect, indeed — in the left tail of the PDF, the

extra moment matching improves the fit in its right tail. More generally, for approximate distributions

containing L > 3 parameters (e.g., shadowed versions of the generalized fading models), these can

be calibrated using two equations from the asymptotic matching (ã0 = a0 and b̃0 = b0) and L − 2

equations by matching multiple moments: E[R̃n1 ] = E[Rn1 ], · · · ,E[R̃nL−2 ] = E[RnL−2 ]. Here again,

the values of n1, ..., nL−2 can be chosen somewhat arbitrarily. Also, the higher these values, the

better the fit in the right tail of the PDF.

In short, this research proposes to calibrate the parameters of any selected two-parameter approxi-

mate sum distribution by forcing the first two of the constraints

ã0 = a0 (3.45a)

b̃0 = b0 (3.45b)

E[R̃n] = E[Rn], (3.45c)
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and to adjust the parameters of any selected three-parameter approximate distribution by forcing all

three constraints. Notice that the terms on the right-hand side of (3.45), namely, a0, b0, and E[Rn],

refer to the exact sum, being given in (3.43a), (3.43b), and (3.44), and depending ultimately on the

distribution parameters of the summands at hand. As for the terms on the left-hand side of (3.45),

namely, ã0, b̃0, and E[R̃n], these must be obtained as a function of the parameters of the approximate

distribution under consideration.

Next, as an illustrative example, consider the left-hand size of (3.45) for the κ-µ distribution. It is

worth mentioning that for approximate distributions that have only two parameters of adjustment

(e.g., Nakagami-m and Weibull cases), the solution is obtained in closed-form fashion. Conversely,

for approximate distributions with three or more parameters of fit (e.g., α-µ, η-µ, κ-µ, κ-µ shadowed

cases), transcendental equations appear that have to be solved numerically, e.g., by using built-in

routines of computing software such as Matlab and Mathematica.

Sum of κ-µ Random Variables

Here, the proposed framework is employed to approximate the exact sum distribution given in (3.1),

where Ri is given by (3.32). Specifically, the sum of κ-µ RVs is aproximated by using another κ-µ RV.

Therefore, R̃ is assumed to follow a κ-µ PDF, given by

fR̃(r) =
2µ̃(1 + κ̃)

1+µ̃
2 rµ̃

κ̃
µ̃−1

2 Ω̃
µ̃+1

2 exp(µ̃κ̃)
exp

(
− µ̃(1 + κ̃)r2

Ω̃

)
Iµ̃−1

(
2µ̃r

√
κ̃(1 + κ̃)

Ω̃

)
, (3.46)

where κ̃, µ̃, and Ω̃ being the parameters to be determined by solving (3.45). For this purpose, ã0 and

b̃0 can be obtained from (3.35), with n = 0, this yields

ã0 =
2µ̃κ̃

1−µ̃
2 (1 + κ̃)

1+µ̃
2

Γ(µ̃)Ω̃
µ̃+1

2 exp (µ̃κ̃)

(
µ̃

√
κ̃ (1 + κ̃)

Ω̃

)µ̃−1

(3.47a)

b̃0 = 2µ̃− 1, (3.47b)

and from (3.33), the n-th moment of the approximate distribution is given by

E[R̃n] =
Γ
(
µ̃+ n

2

)
exp [−κ̃µ̃] Ω̃

n
2

Γ (µ̃i)
[
(1 + κ̃) µ̃

]n/2 1F1

(
µ̃+

n

2
; µ̃; κ̃µ̃

)
. (3.48)

Using (3.47) and (3.48) with n = 2 into (3.45), the solution for the κ-µ case reduces to[4]

[4] For complete detail of how to arrive at (3.49), please check Appendix B.
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µ̃ =

M∑

i=1

µi (3.49a)

Ω̃ = E[R2] (3.49b)

2κ̃
1−µ̃

2 (1 + κ̃)
1+µ̃

2

Γ(µ̃)Ω̃
µ̃+1

2 exp (µ̃κ̃)

(
µ̃

√
κ̃ (1 + κ̃)

Ω̃

)µ̃−1

=

∏M
i=1

[
2κ

1−µi
2

i
(1+κi)

1+µi
2 Γ(2µi)

Γ(µi)Ω
µi+1

2
i

exp(µiκi)

(
µi

√
κi(1+κi)

Ωi

)µi−1
]

Γ
(

2
∑M

i=1 µi

) ,

(3.49c)

where E[R2] is given in (3.44) and only (3.49c) remaining to solved numerically for κ̃. Note that the

parameters µ̃ and Ω̃ are given in a closed-form fashion.

3.1.3.3 Numerical Examples and Discussions

This section checks the accuracy of the proposed approximation through some numerical examples.

The exact sum statistics are computed via numerical integration with the use of (3.2). As a term of

comparison, the approximation in [51] based solely on MoM for the sum of κ-µ RVs is also included.

Next, the curves for both the PDF and the CDF are provided.

Before presenting the numerical results, an important remark is in order. It is necessary to provide

some clear evidence that, for engineering purposes[5], the proposed framework (asymptotic match-

ing and, secondarily, moment matching) outperforms the traditional one (moment matching only) in

calibrating the parameters of any distribution model selected to approximate a given fading sum.

As mentioned before, the asymptote of the channel PDF around zero governs the high-SNR perfor-

mance of a communications system operating over that channel, e.g., in terms of important metrics

such as outage probability and bit-error rate [117]. So, by matching the asymptotes of the approxi-

mate and exact sums, a very good fit (asymptotically exact) is expected for such performance metrics

at medium to high SNR — a paramount regime in practice. In such applications, the distribution’s

body and right tail play a minor role, if any.

All curves are presented as a function of the envelope r. In addition, the exact solutions are plotted

with solid lines; the proposed approximations, with markers; and the MoM approximations [51], with

dash-dotted lines.

Fig. 3.8 shows the PDF and CDF for the sum of three i.i.d. κ-µRVs by varying µi for shape parameters

Ωi = 1, κi = 1.7. First, note in Fig. 3.8 that, our proposed approximations render an excellent,

asymptotically optimal fit at the left tail of the curves. This region becomes medium to high SNR

[5] By “engineering purposes” it means “regarding the performance of communications systems”.
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Figure 3.8: Sum of three i.i.d. κ-µ RVs by varying µi for Ωi = 1 and κi = 1.7.
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Figure 3.9: Sum of three i.n.i.d. κ-µ RVs for Case I: (µ1, µ2, µ3) = (0.5, 1.5, 2.5), (κ1, κ2, κ3) =
(1.1, 3.1, 7.5), Ωi = 1, and Case II: (µ1, µ2, µ3) = (1.5, 3.2, 4.5), (κ1, κ2, κ3) = (2.1, 3.2, 3.9), Ωi = 1.
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when power sums (i.e., Υ
∆
= R2/σ2 with σ2 being the noise power) come into play. On the other

hand, the κ-µ MoM approximation keeps good track of the exact sum distribution at high SNR (left

tail of the distributions). It is worth mentioning that, as a rule, the MoM approximations outperform

the proposed approximations at the right tail (this region becomes low SNR regime). This fact will be

more evident in the i.n.i.d. case (vide Fig. 3.9). Yet this low SNR range is of little or no concern to

practical applications such as estimating the outage probability or error rate at desirable operational

levels (e.g., below 10−4). At medium to high SNR, such metrics are also dominated by the channel

asymptote around zero [117], mimicking the general trend of the CDF curves in Fig. 3.8b.

More extremely, Fig. 3.9 addresses the sum of three i.n.i.d. κ-µ RVs. For these scenarios, the

corresponding fading parameters are given by: Case I: (µ1, µ2, µ3) = (0.5, 1.5, 2.5), (κ1, κ2, κ3) =

(1.1, 3.1, 7.5), Ωi = 1, and Case II: (µ1, µ2, µ3) = (1.5, 3.2, 4.5), (κ1, κ2, κ3) = (2.1, 3.2, 3.9), Ωi = 1. In

all instances, the same general observations made for Fig. 3.8 still hold true, except that no longer

any MoM approximation keeps reasonable track of the exact sum distribution at the left tail of the

curves (recall this region denotes the high SNR). It is worth pointing out that our curves ensure a

very good fit at the left tail of both PDF and CDF. However, contrary to the MoM approximations, our

proposed approach present poor fit at the right tail of the curves (see Fig 3.9a). As mentioned above,

this region is not very meaningful in the performance analysis of wireless systems.

3.1.4 Conclusions

3.1.4.1 Nakagami-m Approximation

In this approach, a novel closed-form expression to approximate the PDF of the sum of indepen-

dent RVs by using a mixture of two Nakagami-m distributions was introduced. The parameters of

the approximate distribution have been estimated by implementing the completely unsupervised EM

learning algorithm. Our results find applicability in many important communications scenarios where

sums of RVs occur. For instance, simple closed-form approximate expressions for ABEP of EGC

for both coherent and non-coherent modulations schemes were derived. The asymptotic behav-

ior of the ABEP in the high SNR regime was analyzed with representative examples. Additionally,

analytical expressions have also been obtained for ABEP at low SNR regime. Results for ABEP

performance for EGC method were presented from representative cases (i.e., low and high fading

severity/branches) for both low and high SNR regimes. Finally, our approach can be easily extended

to approximate the sum of more general fading distributions, facilitating the performance analysis of

wireless communications in emerging environments (e.g., mm-Wave, D2D, UAV, among others).
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3.1.4.2 Generalized Approximation

In this approach, a novel framework to approximate a given sum of non-negative independent RVs

was proposed. Our main goal was to provide a more effective way (instead of MoM) to calibrate the

approximate solution parameters. Specifically, our method have matched the asymptotic behavior

around zero between the approximation and the exact sum. Because of this, the method is called

asymptotic matching. The approach capitalized on the novel technique to estimate the κ-µ model’s

parameters for the sum of i.i.d. and i.n.i.d. κ-µ RVs. The results showed a much better fit at the left

tail of curves compared to the classical MoM. Finally, our approach can be readily extended to sums

of fading powers also occurring in wireless applications (i.e., outage probability, bit-error rate).

3.2 RATIO OF RANDOM VARIABLES

The performance analysis of some scenarios considered key technologies (CR, FD, and PLS) for

future wireless networks involves calculating the signal’s power ratio. As mentioned previously, gen-

eralized fading distributions are better suitable than conventional models to fit field data of emerging

scenarios in 5G and beyond networks. Therefore, the distribution of the ratio of two α-µ RVs is of par-

ticular interest in the analytical evaluation of wireless systems. In light of the above considerations,

this section derives closed-form exact expressions for the main statistics (i.e., PDF, CDF, and MGF)

of the ratio of independent and i.n.i.d. squared α-µ RVs. Unlike approaches available in the litera-

ture, our ratio expressions’ fading parameters can be non-constrained arbitrary positive real numbers.

This way, our formulations relieve the strong assumption (parameters associated with positive integer

numbers) considered in [62] and [63] for the ratio of two squared α-µ RVs. Furthermore, a simple

practical application example in PLS, namely SOP is also provided. Before addressing the proposed

ratio expressions, the exact statistics of the ratio of two independent RVs are revisited.

3.2.1 Exact Solution Statistics

Let γ1 and γ2 be two statistically independent RVs and X = γ1/γ2 their ratio. Thus, from standard

statistical procedures [137], the exact PDF of X can be obtained by

fX(x) =

∫ ∞

0

yfγ1
(xy) fγ2

(y)dy. (3.50)

The CDF of X can be formulated as [137]

FX(x) = Pr {X ≤ x} = Pr

{
γ1

γ2
≤ x

}
=

∫ ∞

0

Fγ1
(xy) fγ2

(y)dy. (3.51)
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From (3.50), the n-th order moment of the RV X is defined as [137]

E [Xn]
∆
=

∫ ∞

0

xnfX(x)dx. (3.52)

The MGF of X can be obtained, by definition, as [153]

MX(s)
∆
= E

[
exp(−sX)

]
=

∫ ∞

0

exp (−sx) fX(x)dx. (3.53)

Henceforth, it is assumed that the RVs γ1 and γ2 are taken from the α-µ distributions.

3.2.2 Proposed Ratio Statistics Representations

Here, closed-form expressions for the PDF, CDF, MGF and higher order moments of the ratio X =

γ1/γ2 are provided.

Let γ
∆
= γtR

2 be the received SNR through an α-µ fading channel, where γt
∆
= P/N0 is defined as

the transmit SNR, with P being the transmit power and N0 being the mean power of the AWGN.

Hence, the corresponding PDF and CDF can be obtained from (2.27) by performing a transformation

of variables as [53, Eqs. (8) and (10)]

fγ(γ) =
αγ(αµ/2)−1

2βαµ/2Γ(µ)
exp

[
−
(
γ

β

)α/2
]
, (3.54)

Fγ(γ) =
1

Γ(µ)
Υ

(
µ,

(
γ

β

)α/2
)
, (3.55)

where β = γΓ(µ)/Γ(µ+ 2/α), with γ being the average received SNR, so that

γ = E [γ] d−η

= Ω2 Γ(µ+ 2/α)

µ2/αΓ(µ)
γtd

−η, (3.56)

in which d is the propagation distance, and η is path-loss exponent. Now, by using the Meijer G-

function representation of the lower incomplete gamma function Υ(·, ·) [154, Eq. (06.09.26.0006.01)]

and the exponential function exp (·) [154, Eq. (01.03.26.0004.01)]

exp(−z) = G1,0
0,1

[
z

∣∣∣∣ 0

]
, (3.57a)

Υ(a, z) = zaG1,1
1,2


z
∣∣∣∣

1 − a

0,−a


 , (3.57b)

into (3.54) and (3.55), the PDF and CDF of γ can be rewritten as
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fΥ(γ) =
αγ(αµ/2)−1

2βαµ/2Γ(µ)
G1,0

0,1

[(
γ

β

)α/2 ∣∣∣∣ 0

]
. (3.58)

FΥ(γ) =
1

Γ(µ)

(
γ

β

)µα
2

G1,1
1,2



(
γ

β

)α
2
∣∣∣∣

1 − µ

0,−µ


 . (3.59)

Next, the PDF, CDF, MGF, and the n-th moment of the ratio of two independent squared α-µ RVs

are given in terms of the univariate Fox H-function in the following proposition. It is worth mentioning

that, it is assumed α1, α2 ∈ R+, k = α1

α2
, µ1, µ2 ∈ R+, and x ∈ R+.

Proposition 5. Let γ1 and γ2 be i.n.i.d. squared α-µ distributed RVs with density functions given

in (3.54) and (3.55). The PDF, CDF, and MGF of the ratio X = γ1/γ2 are respectively given by

fX(x) =
α1x

α1µ1
2 −1β

α1µ1
2

2

2β
α1µ1

2
1 Γ(µ2)Γ(µ1)

H1,1
1,1



(
xβ2

β1

)α1
2
∣∣∣∣

(1 − µ2 − kµ1, k)

(0, 1)




︸ ︷︷ ︸
H1

, (3.60)

FX(x) =
1

Γ(µ2)Γ(µ1)

(
xβ2

β1

)α1µ1
2

H1,2
2,2



(
xβ2

β1

)α1
2
∣∣∣∣

(1−µ1, 1),(1−µ1k−µ2, k)

(0, 1), (−µ1, 1)




︸ ︷︷ ︸
H2

, (3.61)

MX(s) =
α1

2Γ(µ2)Γ(µ1)

(
β2

sβ1

)α1µ1
2

H1,2
2,1



(
β2

sβ1

)α1
2
∣∣∣∣
(1−µ2−kµ1, k), (1 − µ1α1

2 , α1

2 )

(0, 1)




︸ ︷︷ ︸
H3

. (3.62)

E [Xn] =
(Ω1Ω2)

2n
Γ
(
µ1 + 2n

α1

)
Γ
(
µ2 − 2n

α2

)

µ
2n/α1

1 µ
2n/α2

2 Γ (µ1) Γ (µ2)
, for n > µiαi, i ∈ {1, 2.} . (3.63)

Proof. The proof is provided in Appendix C.1.

Remark 2. Notice that contrary to previous works [62], [63], the results of Proposition 5 are general,

since no constraints are imposed on the parameters of γ1 and γ2.

Remark 3. It is worth mentioning that currently the Fox H-function is not implemented in mathemat-

ical software packages such as Wolfram Mathematica. However, the Fox H-function can be evalu-

ated using either numerical evaluations in the form of a Mellin–Barnes integral [155] or by applying

calculus of residues. In the former, a portable implementation of the Fox H-function in MATHE-

MATICA®Wolfram is provided in Appendix C. The code is simple, efficient, highly accurate and its

convergence is always attained. Here, it is worth mentioning that the overall convergence speed of

the proposed code is achieved faster for small values of the argument, namely “z” (see (C.16)), and

influenced by the fading parameters of the distribution in matter. Moreover, tests were carried out for

different fading conditions, from which the average elapsed time to obtain a desired accuracy (e.g.,
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Tabla 3.2: PDF of the Ratio for particular cases of the α-µ model.

Ratio PDF

Nakagami-m/Nakagami-m fX(x) =
xµ1−1β

µ1
2

β
µ1
1 Γ(µ2)Γ(µ1)

G1,1
1,1

[
xβ2

β1

∣∣∣∣
1 − µ2 − µ1

0

]

Nakagami-m/Weibull fX(x) =
xµ1−1β

µ1
2

β
µ1
1 Γ(µ2)

H1,1
1,1

[
xβ2

β1

∣∣∣∣
(− 2µ1

α2
, 2

α2
)

(0, 1)

]

Nakagami-m/Rayleigh fX(x) =
xµ1−1β

µ1
2

β
µ1
1 Γ(µ1)

G1,1
1,1

[
xβ2

β1

∣∣∣∣
−µ1

0

]

Weibull/Weibull fX(x) =
α1x

α1
2

−1β
α1
2

2

2β
α1
2

1

H1,1
1,1

[(
xβ2

β1

)α1
2

∣∣∣∣
(−k, k)
(0, 1)

]

Weibull/Nakagami-m fX(x) =
α1x

α1
2

−1β
α1
2

2

2β
α1
2

1 Γ(µ2)
H1,1

1,1

[(
xβ2

β1

)α1
2

∣∣∣∣
(1 − µ2 − α1

2 ,
α1

2 )
(0, 1)

]

Weibull/Rayleigh fX(x) =
α1x

α1
2

−1β
α1
2

2

2β
α1
2

1

H1,1
1,1

[(
xβ2

β1

)α1
2

∣∣∣∣
(− α1

2 ,
α1

2 )
(0, 1)

]

Rayleigh/Rayleigh fX(x) = β2

β1
G1,1

1,1

[
xβ2

β1

∣∣∣∣
−1
0

]

Rayleigh/Nakagami-m fX(x) = β2

β1Γ(µ2)G
1,1
1,1

[
xβ2

β1

∣∣∣∣
−µ2

0

]

Rayleigh/Weibull fX(x) = β2

β1
H1,1

1,1

[
xβ2

β1

∣∣∣∣
(− 2

α2
, 2

α2
)

(0, 1)

]

10−8 in our tests) was ∼ 4.5 s. Unlike other codes available in the literature for the implementation of

the Fox H-function, our algorithm is valid for the evaluation of any univariate Fox H-function without

any mathematical constraint. In the latter, an alternative method to compute the results presented

here is given by the series representation for the Fox H-functions H1, H2, and H3 as in (3.64), (3.65)

and (3.66), respectively. It is important to emphasize that (3.64), (3.65) and (3.66) converge ade-

quately and correctly as long as the convergence condition with regard to parameter k is fulfilled.

Moreover, these series yield accurate results and the evaluation time is negligible. For instance,

exhaustive tests have shown that the number of terms to arrive at the desired accuracy (e.g., 10−9)

were around 40 and the time taken varied approximately from 0.8 s to 6.5 s depending on the choice

of the fading parameters. The mathematical derivation of the referred expressions is provided in

Appendix C.

H1 =





∑∞
h=0

zhΓ(k(h+µ1)+µ2)
(−1)hh!

, k ≤ 1, if k = 1 →|z| < 1.

∑∞
h=0

z
−

h+kµ1+µ2
k Γ

(
h+kµ1+µ2

k

)

(−1)hkh!
, k ≥ 1, if k = 1 →|z| > 1.

(3.64)
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Tabla 3.3: CDF of the Ratio for particular cases of the α-µ model.

Ratio CDF

Nakagami-m/Nakagami-m FX(x) = 1
Γ(µ2)Γ(µ1)

(
xβ2

β1

)µ1

G1,2
2,2

[
xβ2

β1

∣∣∣∣
1 − µ1, 1 − µ1 − µ2

0, −µ1

]

Nakagami-m/Weibull FX(x) = 1
Γ(µ1)

(
xβ2

β1

)µ1

H1,2
2,2

[
xβ2

β1

∣∣∣∣
(1 − µ1, 1), (− 2µ1

α2
, 2

α2
)

(0, 1), (−µ1, 1)

]

Nakagami-m/Rayleigh FX(x) = 1
Γ(µ1)

(
xβ2

β1

)µ1

G1,2
2,2

[
xβ2

β1

∣∣∣∣
1 − µ1,−µ1

0, −µ1

]

Weibull/Weibull FX(x) =
(

xβ2

β1

)α1
2

H1,2
2,2

[(
xβ2

β1

)α1
2

∣∣∣∣
(0, 1), (−k, k)
(0, 1), (−1, 1)

]

Weibull/Nakagami-m FX(x) = 1
Γ(µ2)

(
xβ2

β1

)α1
2

H1,2
2,2

[(
xβ2

β1

)α1
2 | (0, 1), (1 − k − µ2, k)

(0, 1), (−1, 1)

]

Weibull/Rayleigh FX(x) =
(

xβ2

β1

)α1
2

H1,2
2,2

[(
xβ2

β1

)α1
2

∣∣∣∣
(0, 1), (− α1

2 ,
α1

2 )
(0, 1), (−1, 1)

]

Rayleigh/Rayleigh FX(x) = xβ2

β1
G1,2

2,2

[
xβ2

β1

∣∣∣∣
0,−1
0,−1

]

Rayleigh/Nakagami-m FX(x) = xβ2

β1Γ(µ2)G
1,2
2,2

[
xβ2

β1

∣∣∣∣
0,−µ2

0, −1

]

Rayleigh/Weibull FX(x) = xβ2

β1
H1,2

2,2

[
xβ2

β1

∣∣∣∣
(0, 1), (− 2

α2
, 2

α2
)

(0, 1), (−1, 1)

]

H2 =





∑∞
h=0

zhΓ(k(h+µ1)+µ2)
(−1)h(h+µ1)Γ(1+h)

, k ≤ 1, if k = 1 →|z| < 1.

∑∞
h=0

z−h−µ1 Γ(h+µ1)Γ(−hk+µ2)

(−1)h−2Γ(1−h)h!
+
∑∞

h=0

z
− h

k
−µ1−

µ2
k Γ
(

−h−µ2
k

)
Γ
(

h+kµ1+µ2
k

)

(−1)h−2Γ
(

−h+k−µ2
k

)
kh!

, k ≥ 1, if k = 1 →|z| > 1.

(3.65)

H3 =





∑∞
h=0

Γ(hk+kµX +µY )zh

(−1)hh!
, k ≤ 1, if k = 1 →|z| < 1.

∑∞
h=0

Γ
(

h+kµX +µY
k

)
z

−
h+kµX +µY

k

(−1)hkh!
, k ≥ 1, if k = 1 →|z| > 1.

(3.66)

In short, the formulations derived in (3.60) to (3.63) are general results that can be reduced to par-

ticular models, such as Rayleigh, Nakagami-m, and Weibull by setting the parameters of the α-µ

distribution (see section 2.2.2.1). Therefore, the PDF, CDF, and MGF for the distribution of the ratio

of two squared of the aforementioned distributions are given in Table 3.2, 3.3 and 3.4, respectively.

3.2.2.1 Application: Physical Layer Security

Here, the utility of the new formulations derived for the ratio of two squared α-µ RVs is demonstrated

by analyzing a high SNR approximation of the SOP for a wiretap channel configuration. Thus, con-

sider the Wyner’s wiretap channel as depicted in Fig. 2.1, where both the main and eavesdropper
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Tabla 3.4: MGF of the Ratio for particular cases of the α-µ model.

Ratio MGF

Nakagami-m/Nakagami-m MX(s) = 1
2Γ(µ2)Γ(µ1)

(
β2

sβ1

)µ1

G1,2
2,1

[
β2

sβ1

∣∣∣∣
1 − µ2 − µ1, 1 − µ1

0

]

Nakagami-m/Weibull MX(s) = 1
Γ(µ1)

(
β2

sβ1

)µ1

H1,2
2,1

[
β2

sβ1

∣∣∣∣
(− 2µ1

α2
, 2

α2
), (1 − µ1, 1)

(0, 1)

]

Nakagami-m/Rayleigh MX(s) = 1
Γ(µ1)

(
β2

sβ1

)µ1

G1,2
2,1

[
β2

sβ1

∣∣∣∣
−µ1, 1 − µ1

0

]

Weibull/Weibull MX(s) = α1

2

(
β2

sβ1

)α1
2

H1,2
2,1

[(
β2

sβ1

)α1
2 | (−k, k), (1 − α1

2 ,
α1

2 )
(0, 1)

]

Weibull/Nakagami-m MX(s) = α1

2Γ(µ2)

(
β2

sβ1

)α1
2

H1,2
2,1

[(
β2

sβ1

)α1
2 | (1 − µ2 − α1

2 ,
α1

2 ), (1 − α1

2 ,
α1

2 )
(0, 1)

]

Weibull/Rayleigh MX(s) = α1

2

(
β2

sβ1

)α1
2

H1,2
2,1

[(
β2

sβ1

)α1
2

∣∣∣∣
(− α1

2 ,
α1

2 ), (1 − α1

2 ,
α1

2 )
(0, 1)

]

Rayleigh/Rayleigh MX(s) = β2

sβ1
G1,2

2,1

[
β2

sβ1

∣∣∣∣
−1, 0

0

]

Rayleigh/Nakagami-m MX(s) = β2

sβ1Γ(µ2)G
1,2
2,1

[
β2

sβ1

∣∣∣∣
−µ2, 0

0

]

Rayleigh/Weibull MX(s) = β2

sβ1
H1,2

2,1

[
β2

sβ1

∣∣∣∣
(− 2

α2
, 2

α2
), (0, 1)

(0, 1)

]

channels are subject to experience independent α-µ distributed fading.

Notice that the CDF of the ratio of two squared α-µ RVs in (3.51) is defined in a similar way that the

SOPA in (2.6). Based on this, the SOPA can be expressed as

SOPA = FX(τ), (3.67)

where τ = 2RS with RS being the secrecy rate threshold (for more details see Section 2.1.2.2),

X = γB/γE for γi, i ∈ {B,E} represents the main and the eavesdropper channels, respectively, and

FX(·) is a CDF of the ratio obtained in (3.61). In the literature, (3.67) is also known as the lower bound

of the SOP, which results very tight at high SNR, as shall be shown in Section 3.2.3. It is noteworthy

that, our formulation for the lower bound of the SOP is valid for non-constrained arbitrary values of

the fading parameters corresponding to the main channel and eavesdropper channel (i.e., αi and µi,

for i ∈ {B,E}). This is in contrast to previous works [76], [77] related to the performance analysis of

physical layer security over single-input single-output (SISO) α-µ fading channels, where constraints

on the fading parameter values were considered (more specifically, αB=αE in [77], and αB , αE must

be co-prime integers in [76]). Therefore, our expressions are a generalization of the aforementioned

approaches. It is worth mentioning that the secrecy performance analysis over MIMO wiretap α-µ
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fading channels was derived in terms of the Fox H-function in [99].

3.2.3 Numerical Results

In this section, in order to validate the accuracy of the proposed expressions for some representative

cases, Monte Carlo simulations are also plotted. Without loss of generality, the propagation distance

di, with i ∈ {1, 2.} is normalized to unity.

Fig. 3.10 shows the PDF and CDF obtained for the ratio of two squared α-µ RVs, by considering

different values of fading parameters. In both figures, the values of the fading parameters are chosen

to show the wide range of shapes that the distribution of the ratio can assume. Fig. 3.10a illustrates

the resulting PDF for different values of {µ1, µ2}, with {α1, α2} = {1.5, 1.1} and γ1 = γ2 = 0 dB. It can

be observed that our expressions perfectly match the Monte Carlo simulations, thus validating our

results. Fig. 3.10b shows the resulting CDF for distinct values of {α1, α2}, with {µ1, µ2} = {3.5, 2.8}
and γ1 = γ2 = 0 dB. Once again, it is observed that our expressions perfectly match the Monte Carlo

simulations. It can also be noticed from the cases presented in those figures that our expressions

allow non-constrained arbitrary values of fading.

Then, Fig. 3.11 evaluates the SOP vs. γB for different combinations of fading parameters αi, µi

with i ∈ {B,E.}. For both figures, the fading parameters are set to: RS = 1 bps/Hz, and γE = 10

dB. In Fig. 3.11a, the impact on the secrecy performance when the main and eavesdropper channels

experience mild and severe fading conditions is explored. Hence, the fading parameters are given by:

{µB, µE} = {3.5, 0.5} , {2.5, 1.5} , {1.5, 2.5} , {0.5, 3.5}, and fixed αi = 2.7 for i ∈ {B,E.}. For all cases,

it can be noticed that the proposed lower bound is very tight to the exact SOP obtained by Monte

Carlo simulations. It is observed that as µB increases and µE decreases, the security performance

of the system improves. This is because high values of µB and low values of µE indicate light and

heavy fading on the legitimate and eavesdropper channels, respectively. Now, in Fig. 3.11a, it is

investigated how parameter αi for i ∈ {B,E.} affects PLS performance. The fading parameters for

this cases are set to: {αB, αE} = {3.5, 0.5} , {2.5, 1.5} , {1.5, 2.5} , {0.5, 3.5}, and fixed µi = 4.2 for

i ∈ {B,E.}. Again, note that in all instances, our analytical expressions match with Monte Carlo

simulations. Besides, it is observed that the αi presents a similar behavior to µi (for i ∈ {B,E.})

from a secrecy perspective. That is, having an αB much larger than αE turns out to be beneficial

for PLS. Finally, from both figures, it is evident that the fading conditions can be used to prevent the

information from being overheard by an eavesdropper.
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3.2.4 Conclusions

In this section, novel exact analytical expressions for the PDF, CDF, MGF, and higher order moments

of the ratio of two squared α-µ RVs in terms of the Fox H-function were derived. Importantly, this

expressions, unlike previous related works, are valid for any values of the fading parameters α and µ.

Additionally, a series representation for the formulations are also provided. Based on these results,

analytical expressions for the statistics of the ratio of well-known distributions, such as Nakagami-m,

Weibull, and Rayleigh, were also provided as byproducts. These novel statistics represent a useful

tool to assess the performance of wireless communication schemes considering generalized fading-

channel models with applicability in scenarios for next-generation wireless networks. For illustration

purposes, the SOP for PLS-based wireless networks was analyzed. Finally, it is worth mentioning

that the our analytical expressions can be evaluated in a straightforward and efficient manner through

mathematical software packages. In this context, an implementation of the Fox H-function was also

provided.
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4 PHYSICAL LAYER SECURITY ENHANCEMENT IN N-WAVE

WITH DIFFUSE POWER FADING CHANNELS

This chapter investigates the effect of considering realistic propagation conditions that differ from

the classic Rice and Rayleigh fading from a PLS perspective. Specifically, this work studies how

the superposition of a number of dominant specular waves and diffusely propagating components

impacts the achievable secrecy performance compared to conventional assumptions relying on the

central limit theorem. Analytical expressions for the SOP and the ASC are derived by assuming an

arbitrary number of dominant waves at the desired and eavesdropping ends, as well as simplified

approximations that become asymptotically tight in the high-SNR regime. Our expressions have

similar complexity to other alternatives in the literature derived in terms of well-known elementary

and special functions for simpler fading models. Very useful insights on the impact on physical layer

security by varying (i) the number; (ii) the relative amplitudes and (iii) the overall power of the

dominant specular components are also provided. This research shows that it is possible to obtain

remarkable improvements on the system secrecy performance when: (a) the relative amplitudes of

the dominant specular components for the legitimate channel are more unbalanced compared to

those of the eavesdropper’s channel, and (b) the power of the dominant components for the main

channel is significantly larger than the power of the dominant components for the wiretap channel.

The goal is to perform a fine-grain characterization of the role of individual multipath waves of the

NWDP model on the secrecy performance, and to support our findings with analytical results.

4.1 SYSTEM MODEL

Consider the classic Wyner’s wiretap channel, as depicted in Fig. 2.1. In this setup, it is assumed

that the main and eavesdropper channels experience independent quasi-static fading, and that all

nodes are equipped with a single antenna. The signal at each of the receiving ends is expressed as

a superposition of N multipath waves arising from dominant specular reflections, and M additional

waves associated to diffuse scattering, i.e., Bob and Eve are subject to NWDP fading channels (see

Section 2.2.2.4).

Let γ
∆
= γtR

2 be the instantaneous received SNR, where γt
∆
= P/N0 is defined as the transmit SNR,

with P being the transmit power and N0 being the mean power of the AWGN. Note that γ can also be
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redefined for the sake of convenience as γ = γ|h|2, where h denotes any normalized fading channel,

i.e., E{|h|2} = 1 and γ representing the average receive SNR. Departing from (2.37) and following

the standard procedure of transformation of variables, i.e., fγ(γ) = 1

2
√

γγ
fR

(√
γ
γ

)
, the PDF and

CDF of γ over NWDP fading channels are given by [20]

fi(γi) =
1

γi

exp

(
−γi

γi

) ∞∑

zi=0

Czi
Lzi

(
γi

γi

)
, (4.1a)

Fi(γi) =
∞∑

zi=0

Czi

zi∑

ki=0

(−1)ki

ki!

(
zi

ki

)
Υ

(
ki + 1,

γi

γi

)
, (4.1b)

where the fading parameters (i.e., the number of dominant components Ni, power of diffuse waves

Ωi, and amplitudes of specular waves Vn,i for n = 1, . . . ,Ni) are embedded in the coefficient Czi
,

in which i ∈ {B,E} represents either the main channel or the eavesdropper channel, and γi is the

average received SNR at B or E as previously stated, given by

γi = γtE

[
R2

i

]
r−ηi

i = γt




Ni∑

n=0

V 2
n,i + Ωi


 r−ηi

i , (4.2)

where ηi is the path-loss exponent, and ri is the propagation distance[1]. Also, Czi
is given by [20]

Czi
=

zi∑

ki=0

(−ǫi)ki

ki!

(
zi

ki

)
u

(2ki)
Ni+1, (4.3)

where ǫi and u
(2ki)
Ni+1 are given by (2.39) and (2.40), respectively. Next, the secrecy metrics under

NWDP fading channels in terms of well-known functions in the communication theory are found.

4.2 SECRECY METRICS

This section derives analytical expressions for the SOP, ASC and high-SNR approximations of the

SOP and ASC over NWDP fading channels.

4.2.1 SOP Analysis

Here, it is considered a passive eavesdropping attack, so Eve’s CSI is not available at Alice. There-

fore, Alice can only encode the confidential messages into codewords at a constant secrecy rate

RS.

[1] Here, as in the LoS ball blockage model, it is assumed that ri lies within a sphere of fixed radius rB.
Interested readers can revise [156] for further guidance about simplification of the LoS region as a fixed
equivalent LoS ball in mm-Wave cellular networks.
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For this configuration, the exact formulations of the SOP and a high-SNR approximation of the SOP

are given by (2.5) and (2.6), respectively. Based on this, these metrics are introduced in the following

proposition.

Proposition 6. The SOP and the SOPA over NWDP fading channels can be obtained as

SOP =1 −
∞∑

zB=0

CzB

nB∑

kB=0

(−1)kB

(
zB

kB

)(
1

γE

) ∞∑

zE=0

CzE

kB∑

q=0

1

q!

(
1

γB

)q

exp

(
−τ − 1

γB

) q∑

a=0

(
q

a

)

× (τ − 1)
q−a

τa

(
1

γE

+
τ

γB

)−1−a

Γ (1 + a) 2F1

(
1 + a,−zE; 1;

γB

γB + γEτ

)
(4.4)

SOPA =1 −
∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

(
zB

kB

) ∞∑

zE=0

CzE

kB∑

q=0

(γEτ)
q
γB

(γB + τγE)
q+1 2F1

(
−zE, 1 + q; 1;

γB

γB + γEτ

)

(4.5)

Proof. See Appendix D.1.

It is worth mentioning that the derived analytical expressions for both the SOP and SOPA are ex-

pressed in terms of infinite series representations. This is also the case of the analysis in [86] for

TWDP based on the approximate PDF in [17], which arises as a special case of our analysis.

4.2.2 Asymptotic SOP Analysis

In order to provide useful insights on the role of NWDP model fading parameters in the context of PLS,

the main concern in this section is to derive asymptotic expressions of the SOP. For this purpose,

the behavior of the SOP given in (2.5) in the high-SNR regime is explored. Here, it is assumed

that γB → ∞ while γE is kept fixed. As mentioned in Section 2.1.2.3, this scenario corresponds

to the case in which the transmitter (Alice) is very close to the legitimate receiver (Bob) and the

eavesdropper (Eve) is located far away. our goal is to derive asymptotic SOP expressions in the form

of (2.7). Next, the corresponding asymptotic expressions of the SOP over NWDP fading channels

are given in the following Proposition.

Proposition 7. The asymptotic expressions of the SOP over NWDP fading channels for γB → ∞
can be formulated as
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SOP∞ ≃
∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

(
zB

kB

)(
τγE

γB

)kB+1 ∞∑

zE=0

CzE 2F1 (kB + 2,−zE; 1; 1) (4.6)

SOP∞ ≃ KNB
+ 1

γB

exp
(
−KNB

)
Eθ

[
exp

(
−2f(θ)

ΩB

)]
Ge. (4.7)

where

Ge =
∞∑

zE=0

CzE

zE∑

h=0

(−1)h

h!

(
zE

zE − h

)(
−1 +

(
1 + γE (1 + h)

)
τ
)
. (4.8)

denotes a constant secrecy gain attributed to the eavesdropper channel.

Proof. See Appendix D.2.

Remark 4. For diversity order analysis, important observations are in order: (i) Comparing (2.7),

i.e., SOP∞ ≃ Gcγ
−Gd

B with respect to (4.7), it is evident that the derived secrecy diversity order,

Gd = 1, is affirmed by Fig. 4.6 where the slope of the SOP remains identical regardless of the fading

parameters (e.g., Vn,B, NB, and KB
dB ) considered at the legitimate path; (ii) Again, by comparing

(2.7), i.e., SOP∞ ≃ Gcγ
−Gd

B with respect to (4.6), notice that the secrecy diversity order for such

asymptotic expression includes some terms of the form Gd = (kB + 1), for kB = 0 . . .∞. This

indicates that the decaying slope of the SOP can be steeper before the true secrecy diversity order

captured by (4.7) effectively kicks in. This will be later discussed in the Numerical Results section.

4.2.3 ASC Analysis

Unlike SOP analysis, this section focuses on active eavesdropping cases since the CSI of both Bob

and Eve channels is available at Alice. As pointed out in Section 2.1.2.4, the ASC’s exact formulation

is given by (2.8). Based on this, the ASC expression under NWDP fading channels is given in the

following proposition.

Proposition 8. The ASC expression over NWDP fading channels can be expressed as
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CS =
1

ln 2

[
exp

(
1

γB

)
E1

(
1

γB

)
−

∞∑

zB=1

CzB


Γ (zB)U

(
zB, 0,

1

γB

)
−

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

)
kB! exp

(
1

γE

)

×


E1

(
1

γE

)
− exp

(
1

γB

) kB∑

d=0

1

d!

(
1

γB

)d

Γ (1 + d) Γ

(
−d, 1

γB

+
1

γE

)



− exp

(
1

γB

+
1

γE

)

× E1

(
1

γB

+
1

γE

)
+

∞∑

zE=1

CzE

zE∑

kE=0

(−1)kE

kE!

(
zE

kE

)
kE! exp

(
1

γB

)
E1

(
1

γB

)
−

kE∑

w=0

1

w!

(
1

γE

)w

× exp

(
1

γE

)
Γ (1 + w) Γ

(
−w, 1

γB

+
1

γE

))
−

∞∑

zB=1

exp

(
1

γB

+
1

γE

)
CzB

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

)

× 1

(1 + kB)

(
1

γB

)kB+1 ∞∑

zE=1

CzE

zE∑

kE=0

(−1)kE

kE!

(
zE

kE

)
1

(1 + kE)

(
1

γE

)kE+1 ∞∑

g=0

(1)g

g! (kB + 2)g

(
1

γB

)g

×
∞∑

c=0

(1)c

c! (kE + 2)c

(
1

γE

)c

Γ (3 + kE + kB + g + c) Γ

(
−2 − kB − kE − g − c,

1

γB

+
1

γE

)]
.

(4.9)

Proof. See Appendix D.3.

It is worth mentioning that although (4.9) is an elongated formulation, it is given in terms of well-known

functions, facilitating its implementation in mathematical software packages.

4.2.4 Asymptotic ASC Analysis

Here, an asymptotic ASC formulation to evaluate the secrecy performance in the high-SNR regime

is derived. Similarly to the asymptotic SOP analysis, it is assumed that γB goes to infinity, while γE

is kept fixed. An asymptotic ASC approximation is given in (2.12). Based on this formulation, the

asymptotic ASC under NWDP channels is given below.

Proposition 9. The asymptotic expressions of ASC over NWDP fading channels is given by

C
∞
S ≃ log2(γB) + log2(e)

∞∑

zB=0

CzB

∞∑

b=0

(−zB)b

b!
ψ (1 + b) − 1

ln 2

[
exp

(
1

γE

)
E1

(
1

γE

)

−
∞∑

zE=1

CzE
Γ (zE)U

(
zE, 0,

1

γE

)]
. (4.10)

Proof. See Appendix D.4.

73



4.3 NUMERICAL RESULTS AND DISCUSSIONS

In this section, the accuracy of the proposed expressions are validated via Monte Carlo simulations,

for some representative cases. Without loss of generality, the propagation distance ri, with i ∈ {B,E.}
is normalized to unity. Also, it is defined a power ratio parameter similar to the well-known Rician K

parameter, i.e., KNi

∆
=

ΩNi

Ωi
, with ΩNi

=
∑Ni

n=0 V
2

n,i being the total average power of the specular

components. For the sake of comparison, the Rayleigh case (i.e., NB = NE = 0) is included as a

reference in the SOP analysis.

Before getting into numerical examples, important remarks are in order. 1) It is important to pro-

viding clear evidence to identify the impact of increasing/decreasing the number and power of the

dominant specular waves over the secrecy performance. In other words, the goal is to determine to

what extent it is worth that each of the individual specular waves is treated separately, or it can be

safely incorporated into the diffuse component. 2) Depending on the value of the involved channel

parameters, the solutions given in (4.4)-(4.10) require a different number of terms to attain an accu-

rate approximation. In this context, the overall convergence speed of these series is achieved faster

for small values of both dominant rays (e.g., NB, and NE) and power of Bob’s dominant specular

components (i.e., KNB
). For instance, exhaustive tests have shown that the number of terms to ar-

rive at the desired accuracy (e.g., 10−6) varied from 20 to 30 at Bob and from 4 to 10 at Eve, and the

average elapsed times to obtain the accuracy mentioned above were ∼ {14.1, 27.5, 81.7, 103.5, 114.6}
seconds for N = {1, . . . , 5}, respectively. Moreover, the mathematical representation of the derived

series consists of well-known elementary and special functions, which can be easily implemented in

software for numerical evaluation.

Fig. 4.1 shows the SOP as a function of γB for different values of dominant specular components

NB = NE = N, by considering the case of balanced amplitudes, i.e., Vn,B = Vn,E ∀B, n = {1, . . . ,N}.

For this scenario, the corresponding fading parameters are given by: KB
dB = 10 log10

(
KB = KNB

)
∈

{15, 25} dBs with KE
dB = 10 dB, RS = 1 bps/Hz, and γE = 4 dB. Note that in all instances, Monte

Carlo simulations perfectly match with our derived results. It can be seen that the secrecy perfor-

mance does not monotonically increase with the number of specular components; instead, notice

that the cases with NB = 1 and NB = 2 bound the secrecy performance for a given KB
dB. Also, it is

observed that the SOP performance improves with increasing the power of Bob’s dominant specular

components (i.e., KB
dB) only for odd numbers of rays (i.e., N = 1, 3). In the opposite scenario, i.e.,

increase KB
dB for even numbers of dominant specular waves (i.e., N = 2, 4) can be regarded as a

worst-case situation in terms of secrecy performance. This is in coherence with the fact that for an

even number of dominant specular components of equal amplitudes, the probability of total cancel-

lation between them is larger than when an odd number is considered [157]. This increases fading

severity for the desired link more relevantly for large K, which ultimately degrades the SOP. Also,

note that for N = 4, the performance is very similar to the Rayleigh case. Regarding the asymptotic

behavior, it can be noticed that the asymptotic plots accurately approximate the SOP curves in the
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Figure 4.1: SOP vs. γB, for different numbers of dominant specular waves N by considering balanced
amplitude scenario (i.e., Vn,i = 1 for n = 1, . . . ,Ni). For all curves, the parameter values are: RS =
1 bps/Hz, γE = 4 dB, KE

dB = 10 dB, Ωi = 1, and Ni = N for i ∈ {B,E}. Dashed lines correspond to
asymptotic analysis by using expression (4.6).

high-SNR regime. However, all curves have different slopes. The reason for this behavior will be

discussed later.

In Fig. 4.2, it is evaluated the SOP vs. γB for different numbers of dominant specular components

NB = NE = N by considering an unbalanced amplitudes scenario. For seeking of readability, yet

without loss of generality, the amplitudes of successive rays are expressed in terms of the amplitude

of the first dominant component, as proposed in [87], that is, Vn,i = αn,iV1,i for n = {2, . . . ,Ni}, with

0 < αn,i < 1 and i ∈ {B,E}. Considering this, the parameters are set to: αn,i = αB = αE = 0.3

with KB
dB ∈ {8, 25} dBs, KE

dB = 0 dB, RS = 1 bps/Hz, and γE = 1 dB. Here, the impact of increasing

both the number and the power of Bob’s dominant rays for the case of unbalanced amplitudes is

investigated. It can be observed in all traces that, unlike on the balanced counterpart, the SOP

performance now monotonically improves when rising KB
dB or lowering N, regardless of whether it

is even or odd. Notice that a reduced number of dominant specular components at Bob is now

benefiting from a secrecy perspective. Also, it can be seen that in all cases, the SOP performance is

always better than its Rayleigh counterpart.

Fig. 4.3 evaluates both the SOP and the SOPA as a function of γB, in order to understand the

interplay between the number of dominant specular components NB = NE = N, the amplitude imbal-

ance and the power of the dominant components. The system parameters are set tos: {αB, αE} ∈
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Figure 4.2: SOP in terms of γB for different numbers of dominant specular waves N, by considering
unbalanced amplitude case (i.e., αn,i = αi = 0.3). For all cases, the corresponding parameters are
set to the following values: RS = 1 bps/Hz, γE = 1 dB, KE

dB = 0 dB, Ωi = 1, and Ni = N for i ∈ {B,E}.

{
(0.2, 0.9), (0.9, 0.2)

}
, RS = 1 bps/Hz, γE = 8 dB, and KB

dB = KE
dB = 25 dB. It can observed that the

worst secrecy performance is attained for cases where the imbalance for the legitimate user αB is

greater than that of αE, i.e. (αB = 0.9, αE = 0.2), which is explained as follows: because the ampli-

tudes for the legitimate link are balanced, this is translated into a more severe fading; conversely, the

unbalanced amplitudes for the eavesdropper’s link indicate a lower fading severity compared to the

Rayleigh case. Combining the two effects, the overall SOP performance is hence worse than when

assuming Rayleigh fading for both links.

On the other hand, for the cases where αB is lower than αE, it can be obtained the desired secrecy

performance (i.e., a target SOP) for a lower average SNR at Bob. In such case, some other interesting

observations can be made: i the secrecy performance for (αB = 0.2, αE = 0.9), Ni with i ∈ {B,E}
is much better than the Rayleigh case. Also, for these scenarios, the increase in the number of

dominant specular rays arriving at both Bob and Eve is detrimental from a PLS perspective; and

(ii) unlike the (αB = 0.2, αE = 0.9) case, the worst secrecy performance for (αB = 0.9, αE = 0.2)

is obtained when the number of arriving dominant components at the receiver ends is equal to two,

i.e., N = 2. Regarding to the high SNR approximation of the SOP, it is clear that its performance is

sufficiently tight with regard the exact analytical solution. It is also expected that the SOPA gradually

approximates the exact SOP with higher accuracy as γE increases.
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Figure 4.3: SOP vs. γB for different numbers of dominant specular waves N by considering un-
balanced amplitude case (i.e., {αB, αE} = {0.2, 0.9} and {αB, αE} = {0.9, 0.2}). For all curves, the
values of channel parameters are: RS = 1 bps/Hz, γE = 8 dB, KB

dB = KE
dB = 25 dB Ωi = 1, and

Ni = N for i ∈ {B,E} .

Fig. 4.4 presents the evolution of the SOP as a function of RS, considering the following channel

settings: γE = 1 dB, γB = 8 dB, KB
dB = KE

dB = 20 dB, and {αB, αE}={0.2, 0.3}. Herein, the

effect of having a different number of dominant specular rays at both Bob and Eve over the secrecy

performance is analyzed. For this purpose, it is assumed a fixed number of rays for the eavesdropper

channel, with gradually increasing the number of rays received at Bob. The following cases are

considered: NE = {2, 3} and NB = {2, 3, 4, 5}, and for the sake of comparison, the figures also

include the case NB = NE. Once again, it can be seen that having a larger number of multipath

waves at the legitimate receiver in this unbalanced scenario effectively increases channel variability,

causing the SOP to deteriorate when transmitting at a certain secrecy rate RS. From all curves, out

the following two cases as detrimental to the SOP: (i) a fixed NB, with increasing the number of rays

on the eavesdropper’s channel and (ii) a fixed NE, with increasing the number of rays on the Bob’s

channel. This can be understood by recalling that in the presence of a single dominant specular

component for each link and a strong LoS condition, the set-up almost reduces to the AWGN case,

for which the SOP is zero as γB > γE. Hence, having a reduced number of rays and a dominant

component much larger than the remaining specular waves turn out to be beneficial for PLS. Besides,

smaller values of RS can improve the secrecy performance of the system, as expected. Finally, all

curves present a better SOP behavior than the Rayleigh fading case.
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Figure 4.4: SOP in terms of RS for different numbers of dominant specular waves of NB = {2, 3, 4, 5}
with regard to NE = {2, 3} by considering unbalanced amplitude case (i.e., {αB, αE} = {0.2, 0.3}).
For all curves, the fading parameters are set as: γE = 1 dB, γB = 8 dB, KB

dB = KE
dB = 20 dB, and

Ωi = 1 for i ∈ {B,E}.

Next, Fig. 4.5 illustrates the SOP vs. γB for different numbers of rays NB = NE = N with γE = 1

dB, KB
dB = 25 dB, and KE

dB = 0 dB. Moreover, the fading parameters are set as: RS = {1, 2.5} with

α = αB,= αE = 0.15 and α = αB,= αE = 0.30 for N = 2, . . . 4, and N = 5, respectively. From

all instances, it can be observed that both the relative amplitudes and the number of the dominant

waves play a pivotal role on the secrecy performance. For instance, notice that the decay of the SOP

is rather abrupt for α = 0.15 and N = 1, . . . , 4 regardless of the choice of RS = {1, 2.5}. However,

when both the number of rays and the relative amplitudes of the rays are increased (say α = 0.3

and N = 5), then the SOP is dramatically impaired and the decay is now similar to the Rayleigh

case. This is in coherence with the observations made in [87] in the limit case of the absence

of diffuse scattering, as α (NB − 1) < 1. This finding confirms that the relative amplitudes of the

dominant components play a pivotal role in the security design criteria. Finally, all curves over NWDP

fading outperform the SOP performance to its corresponding Rayleigh fading cases for the proposed

scenarios.

Next, Fig. 4.6 plots the SOP vs. γB and the two asymptotic results given in (4.6), (4.7), respectively.

In all the cases, it is employed equal numbers of rays at both B and E, i.e., N = NB = NE, RS = 1

bps/Hz, ΩB = ΩE = 1, γE = 8 dB, KB
dB = 20 dB, and KE

dB = 0 dB. Also, yet without loss of generality,

it is assumed the following cases: Case I (N = 2): Bob, V2,B = α2,BV1,B with V1,B = 1, and α2,B = 0.2.

Eve, V2,E = α2,EV1,E with V1,E = 1, and α2,E = 0.9; Case II (N = 3): Bob, Vn,B = αn,BV1,B with
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Figure 4.5: SOP vs. γB for different numbers of dominant specular waves N = NB = NE by varying
the value of RS and assuming unbalanced amplitudes (i.e, α = {0.15, 0.30}). Also, γE = 1 dB,
KB

dB = 25 dB, and KE
dB = 0 dB.

V1,B = 1, αn,B = 0.5 for n = {2, 3}. Eve, Vn,E = 1 for n = {1, 2, 3}; Case III (N = 4): Bob,

Vn,B = αn,BV1,B with V1,B = 1, αn,B = 0.25 for n = {2, 3, 4}. Eve, Vn,E = 1 for n = {1, 2, 3, 4}. Here,

our primary aim is to analyze the secrecy diversity order of the main links in the proposed scenarios.

Firstly, based on the asymptotic expression in (4.7), it can be seen that the secrecy diversity order

is one in all instances (see Remark 4). Specifically, the SOP in Case II quickly reaches the secrecy

diversity order. Conversely, in Case I and III, it can be pointed out before the SOP curves reach

the slope equal to unity, they experience a faster decay (i.e., a steeper slope) for operational ranges

of SOP. For instance, if the target SOP is set to 10−3, the exact and asymptotic SOP in Case I and

III are rather dissimilar; hence, the diversity order is not representative of the actual behavior of the

SOP. This could be somehow interpreted as an equivalent increased secrecy diversity order offered

by the fading parameters (i.e., Vn,B, NB, and KB
dB) of the NWDP model for some range of SNRs. As

mentioned above, such slope’s behavior depends on the particular configuration of the parameters

of the NWDP model. In those situations on which the condition αB (NB − 1) < 1 is met, the decay

of the SOP is rather steep and behaves similarly as if no diffuse component was present [87] for a

certain range of SNR values. In other circumstances, the slope of the SOP rapidly becomes one

and the secrecy diversity order dominates the behavior for the operational range of secrecy outage

probabilities. On the other hand, from (4.6), it can be observed that the exponents for the γB terms

depend on one of the summation indexes (i.e., (kB + 1)). This suggests that each of these terms

contributes in different ways to the decay of the SOP, which explains that the slope of the SOP is
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Figure 4.6: SOP vs. γB for different numbers of dominant specular waves N = NB = NE by assuming
for all cases RS = 1 bps/Hz, ΩB = ΩE = 1, γE = 8 dB, and KB

dB = 20 dB, and KE
dB = 0 dB.

different depending on the range of values of γB. As the SNR is increased, it is only the first term

of the series, which contributes to the SOP, revealing a diversity secrecy order of one (see the red

curves in Fig. 4.6). Finally, notice that the asymptotic analytical in (4.6) is tighter than the asymptotic

one given in (4.7) for low-SNR values.

Then, Fig. 4.7 shows the ASC vs. γB/γE for different configurations of NE, and αE with ΩB = ΩE = 1,

and KB
dB = KE

dB = 25 dB. Here, it is assumed the following scenarios: Case IV (NB = 3,NE = 2):

Bob, Vn,B = αn,BV1,B with V1,B = 1, and αn,B = 0.1 for n = {2, 3}. Eve, V2,E = α2,EV1,E with V1,E = 1,

α2,E ∈ {0.1, 0.5, 1}, and γE = 25 dB; Case V (NB = 2,NE ∈ {1, 2, 3, 4}): Bob, Vn,B = 1 for n = {1, 2}.

Eve, NE = 1: V1,E = 1, NE = 2: V2,E = α2,EV1,E with α2,E = 0.9, NE = 3: Vn,E = αn,EVn,E with

αn,E = 0.9, for n = {2, 3}, NE = 4: Vn,E = αn,EVn,E with αn,E = 0.9, for n = {2, 3, 4} and γE = 15 dB.

Also, with the above-described scenarios, the goal is to investigate the impact of the eavesdropper’s

fading parameters on the ASC performance. To this end, first, note in Case IV that, the combination

of more specular components in Bob than Eve and the low amplitude values related to such dominant

rays at Eve derives into a poor ASC performance. Conversely, high amplitude values of the specular

components at the eavesdropper lead to better ASC performance, as expected. On the other hand,

for the proposed scenario in Case IV, it can be observed that the increase in the number of specular

components at Eve practically does not influence the ASC performance. One of the reasons for this

behavior is that the amplitudes of Eve’s rays take high values regardless of the number of dominant

components. This fact results in fading, which prevents improving the quality of the wiretap channel.
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Figure 4.7: ASC vs. γB/γE for different configurations of NE, and αE with ΩB = ΩE = 1, and
KB

dB = KE
dB = 25 dB.
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Figure 4.8: ASC vs. γB/γE by varying KB
dB for a fixed KE

dB = 0 dB with ΩB = ΩE = 1, and γE = 10
dB.
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Finally, Fig. 4.8 shows the ASC as a function of γB/γE by varying KB
dB for a fixed KE

dB = 0 dB with

ΩB = ΩE = 1, and γE = 10 dB. The remainder parameters are set to: Bob (NB = 3), Vn,B = αn,BV1,B

with V1,B = 1, αn,B = 0.1 for n = {2, 3}. Eve (NE = 3), Vn,E = 1 for n = {1, 2, 3}. Here, the goal is to

explore the impact of increase the power of Bob’s dominant components on the ASC performance.

Therefore, based on all curves, it can be seen that the KB
dB configuration contributes to improving the

ASC performance proportionally. However, this behavior happens up to a particular KB
dB value (i.e.,

30 dB); after that, the ASC remains identical. From a secrecy perspective, this result is a good insight

into future mobile networks’ design criteria. Finally, from all the instances in Fig. 4.7 and Fig. 4.8, it

can be observed how for high-SNR values, the ASC curves exhibit a linear behavior in a log-scale,

which are perfectly captured by the asymptotic ASC expressions.

4.4 CONCLUSIONS

This work explored how the explicit consideration of the incident waves arriving at the receiver ends

may impact PLS performance in the context of wireless fading channels. The analytical expressions

derived here complement and generalize those previously reported works in the literature concerning

generalized fading channel models. Our findings also support the need for using ray-based fading

models in those environments in which conventional fading models cannot adequately characterize

an arbitrary number of dominant specular waves (e.g., mm-Wave communications). The main take-

aways of our work can be summarized as: (i) abundant dominant specular rays impair the SOP,

so scenarios with a reduced number of rays arriving at both Bob and Eve are beneficial whenever

γB > γE ; (ii) balanced amplitudes for the eavesdropper’s link and unbalanced amplitudes for the

desired link are the most favorable case from a PLS perspective; (iii) a significant increase on the

power of Bob’s dominant specular components with respect to the power of Eve’s dominant specu-

lar components (i.e., KB >> KE), in the case of balanced amplitudes, is a worst-case scenario for

secrecy performance; (iv) the combined effect of decreasing the relative amplitudes at Eve, i.e., αE

and low values of relatives amplitudes at the legitimate receiver, i.e. αB, leads to worse the ASC

performance (see Case IV in Fig 4.7).
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5 SECURE TRANSMISSION WITH ANTENNA SELECTION

IN MIMO κ-µ SHADOWED FADING CHANNELS

This chapter investigates the impact of considering realistic propagation conditions on the achiev-

able PLS performance of a MIMO system in the presence of an eavesdropper equipped with multiple

antennas. Specifically, this research concentrates on the κ-µ shadowed fading model because its

physical underpinnings capture a wide range of propagation conditions, while, at the same time, it

allows for a much better tractability than other state-of-the-art fading models. By considering TAS

and MRC reception at the legitimate and eavesdropper’s receiver sides, two relevant scenarios are

studied, namely, (i) the transmitter does not know the eavesdropper’s CSI, and (ii) the transmit-

ter has knowledge of the CSI of the eavesdropper link. To this end, due to the antenna selection

procedure, new and tractable expressions for the PDF and CDF of the maximum of i.i.d. RVs as-

sociated with the legitimate paths under κ-µ shadowed fading are derived. Based on these results,

novel closed-form expressions for the SOP and the ASC are found in a TAS/MRC configuration to as-

sess the PLS performance in both passive and active eavesdropping scenarios. Moreover, analytical

asymptotic expressions of the SOP and ASC are performed in the high-SNR regime. Based on these

formulations, some valuable insights on how the fading parameters and the numbers of antennas at

the receiver ends (i.e., Bob and Eve) impact the secrecy performance of the MIMO system are also

provided.

5.1 SYSTEM AND CHANNEL MODEL STATISTICS

5.1.1 System Model

Based on the TAS/MRC configuration given in Section 2.3, it is considered the classic three-node

model, as illustrated in Fig. 5.1, where a source node Alice (A) sends confidential information to

a legitimate destination node Bob (B), while an eavesdropper Eve (E) attempts to intercept this

information through the eavesdropper channel. In this system, all nodes, i.e., the transmitter, the

receiver, and the eavesdropper, are equipped with multiple antennas denoted by NA, NB, and NE,

respectively.
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Figure 5.1: A general TAS/MRC MIMO network consisting of a legitimate pair and one eavesdropper,
where the transmitter Alice (A), the receiver Bob (B), and the eavesdropper Eve (E) are equipped
with NA, NB, and NE antennas, respectively. This figure is based on [98].

5.1.2 Channel Model

Here, it is assumed that both the legitimate and eavesdropper channels experience i.i.d. quasi-static

κ-µ shadowed fading. Therefore, the corresponding PDF and CDF of the instantaneous SNR of the

RV γ following κ-µ shadowed fading can be expressed as a finite mixture of gamma distributions

by [128][1]

❐ If m < µ

fγ(γ) =

µ−m∑

j=1

A1,jf
G
γ (ωA1;µ−m− j + 1; γ) +

m∑

j=1

A2,jf
G
γ (ωA2;m− j + 1; γ) , (5.1a)

Fγ(γ) = 1 −
µ−m∑

j=1

A1,j exp

(
− γ

∆1

) µ−m−j∑

r=0

1

r!

(
γ

∆1

)r

−
m∑

j=1

A2,j exp

(
− γ

∆2

)m−j∑

r=0

1

r!

(
γ

∆2

)r

, (5.1b)

❐ If m ≥ µ

[1] Noteworthy, the PDF and CDF of the κ-µ shadowed distribution can be represented in many ways (i)
hypergeometric functions as proposed in its original format [21]; (ii) an infinite series in terms of Laguerre
polynomials [10], and (iii) an infinite [158] and finite [128] mixture of gamma distributions. This work
sticks to the last one because of its mathematically tractable expressions, well-suited to dealing with
TAS/MRC systems.
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fγ(γ) =

m−µ∑

j=0

Bjf
G
γ (ωB ;m− j; γ) , (5.2a)

Fγ(γ) = 1 −
m−µ∑

j=0

Bj exp

(
− γ

∆2

)m−j−1∑

r=0

1

r!

(
γ

∆2

)r

, (5.2b)

where fG
X (γ; m̃;x) denotes the PDF of a RV X that follows a gamma distribution, defined as

fG
X (γ; m̃;x) =

(
m̃

γ

)m̃
xm̃−1

(m̃− 1)!
exp

(
−xm̃

γ

)
, (5.3)

and

A1,j = (−1)
m

(
m+ j − 2

j − 1

)(
m

µκ+m

)m(
µκ

µκ+m

)−m−j+1

,

A2,j = (−1)
j−1

(
µ−m+ j − 2

j − 1

)
×
(

m

µκ+m

)j−1(
µκ

µκ+m

)m−µ−j+1

,

Bj =

(
m− µ

j

)(
m

µκ+m

)j (
µκ

µκ+m

)m−µ−j

, (5.4)

and

ωA1 =∆1 (µ−m− j + 1) ,

ωA2 =∆2 (m− j + 1) ,

ωB =∆2 (m− j) , (5.5)

where

∆1 =
γ

µ (1 + κ)
,

∆2 =
µκ+m

m

γ

µ (1 + κ)
. (5.6)

In the above formulations, γ = E [γ] is the average SNR. Besides, µ, m, and κ are the fading param-

eters that denote the number of the multipath clusters, the shadowing severity index, and the ratio

between the total power of the dominant components associated to the LoS and the total power of

the scattered waves, respectively (for more details see Section 2.2.2.3). Finally, it is worth mentioning

that due to the antenna selection procedure, the CDFs given in (5.1b) and (5.2b) should be reformu-

lated in order to derive the maximum of i.i.d. κ-µ shadowed RVs, as will be seen in Appendix E.1.
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5.1.3 Transmission Scheme

As mentioned in section 2.3.1.1, for the proposed MIMO wiretap system, the optimum TAS protocol

selects the strongest antenna between the legitimate entities for transmission, i.e. the antenna that

maximizes the instantaneous SNR between Alice and Bob. From a secrecy perspective, this allows

to maximize the channel capacity and fully exploit the multi-antenna diversity at the transmitter, while

the optimum TAS for Bob corresponds to a random transmit antenna for Eve. Moreover, in an effort to

exploit the antenna diversity at the receiver ends, it is assumed that the MRC technique is employed

at both Bob and Eve. Therefore, from (2.44), the index of the selected antenna at the transmitter,

here for notational convenience denoted by k∗, is given by

k∗ = arg max
1≤k≤NA

NB∑

l=1

∣∣hk,l

∣∣2 , (5.7)

where hk,l is the channel coefficient of the link between k-th transmitting antenna at Alice and l-th

receive antenna at Bob. The index of the selected antenna is reported to Alice through a feedback

channel. Based on the TAS/MRC setup, the received signals at the l-th antenna of Bob and at the

r-th (1 ≤ f ≤ NE) antenna of Eve are given by

yB,l =
√
Phk∗,lx+ nl, (5.8a)

yE,f =
√
Pgk∗,fx+ nf , (5.8b)

where P is is the average transmit power, x denotes the secret message to be transmitted, hk∗,l is the

κ-µ shadowed channel coefficients of the link between the selected antenna k∗ at Alice and the l-th

receive antenna at Bob. Likewise, gk∗,f is the κ-µ shadowed channel coefficient of the link between

the selected antenna k∗ at Alice, and the f -th receive antenna at Eve. Besides, nl and nf are AWGN

noise at the receivers of the l-th antenna of Bob and at the f -th antenna of Eve with zero mean and

variance σ2
w with w ∈ {B,E}, respectively. Based on (5.8), the corresponding instantaneous SNRs

at the receivers can be expressed as

γB =
P
∑NB

l=1

∣∣hk∗,l

∣∣2

σ2
B

, (5.9a)

γE =
P
∑NE

f=1

∣∣gk∗,f

∣∣2

σ2
E

. (5.9b)
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5.1.4 Channel Statistics for TAS/MRC setup

Here, the theoretical framework used to obtain the PDF and CDF of the main and the eavesdropper

channels under the TAS/MRC configuration is introduced. These formulations will be used on the

secrecy analysis in the next sections.

Concerning the eavesdropper channel, it is defined γk∗,f =
P |gk∗,f |2

σ2
E

as the instantaneous received

SNR of the f -th diversity branch of the MRC receiver at Eve. Now, by considering NE i.i.d. κ-µ

shadowed RVs, i.e., γk∗,f (γE, κE, µE,mE) for f = {1, . . . , NE}, the sum of these RVs is another κ-µ

shadowed RV with scaled parameters, i.e., [21, Proposition 1]

NE∑

f=1

γk∗,f (γE, κE, µE,mE) = γE (NEγE, κE, NEµE, NEmE) (5.10)

Departing from (5.2) and applying the relationship given in (5.10), the PDF and CDF at Eve are given

by

❐ If mE < µE

fγE
(γE) =

ηE∑

j=1

AE
1,jfG

(
ωE

A1; ηE − j + 1; γE

)
+

νE∑

j=1

AE
2,jfG

(
ωE

A2; νE − j + 1; γE

)
, (5.11a)

FγE
(γE) =1 −

ηE∑

j=1

AE
1,j exp

(
− γE

∆E
1

)
ηE−j∑

r=0

1

r!

(
γE

∆E
1

)r

−
νE∑

j=1

AE
2,j exp

(
− γE

∆E
2

)
νE−j∑

r=0

1

r!

(
γE

∆E
2

)r

,

(5.11b)

where ηE = NE(µE −mE), and νE = NEmE.

❐ If mE ≥ µE

fγE
(γE) =

βE∑

j=0

BE
j fG

(
ωE

B ; νE − j; γE

)
, (5.12a)

FγE
(γE) =1 −

βE∑

j=0

BE
j exp

(
− γE

∆E
2

)
νE−j−1∑

r=0

1

r!

(
γE

∆E
2

)r

, (5.12b)

where βE = NE(mE − µE). For notational convenience, all the coefficients marked with superscripts

E (e.g., ∆E
1 ) refer to the fading parameters at Eve, which can be obtained from (5.4) to (5.6) by

substituting γ, µ, m and κ by NEγE, NEµE, NEmE, and κE, respectively.
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Regarding the legitimate link, it is defined γk∗,l =
P |hk∗,l|2

σ2
B

for f = {1, . . . , NB} as the instantaneous

received SNR of the l-th diversity branch of the MRC receiver at Bob. Based on this, the CDF and

PDF of γB =
∑NB

l=1 γk∗,l are respectively given in the following propositions.

Proposition 10. The CDF of γB is given by

❐ If mB < µB

FγB
(γB) =1 +

NA∑

k=1

(−1)k
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NA

k

) k∑
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pq
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1
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1,ηB+1−z


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


× exp

(
−γB

(
c

∆B
2

))
γ

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

B , (5.13)

where ηB = NB(µB −mB), νB = NBmB. As in the previous case, all the coefficients marked with su-

perscripts B (e.g., ∆B
1 ) refer to the fading parameters at Bob, which can be obtained from (5.4) to (5.6)

by substituting γ forNBγB, µ forNBµB, m forNBmB, and κ for κB. Also, based on the multinomial the-

orem [149, Eq. (24.1.2)], it follows that ρ (k − c, ηB) =
{(
s1, s2, · · · , sηB

)
: st ∈ N,

∑ηB

t=1 st = k − c
}

,

and similarly ρ (c, νB) =
{(
p1, p2, · · · , pνB

)
: pq ∈ N,

∑νB

q=1 pq = c
}

.

❐ If mB ≥ µB

FγB
(γB) =1 +

NA∑

k=1

(−1)k

(
NA

k

) ∑

ρ(k,νB)
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1
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2
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βB−z
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

st
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

× exp

(
−γB

(
k
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))
γ

∑
νB

t=1
(νB−t)st

B , (5.14)

where ρ (k, νB) =
{(
s1, s2, · · · , sνB

)
: st ∈ N,

∑νB

t=1 st = k
}

and βB = NB(mB − µB).

Proof. See Appendix E.1.

Proposition 11. By taking the derivative of (5.13) and (5.14) with respect to γB, the PDFs at Bob

can be obtained as
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❐ If mB < µB

fγB
(γB) =
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. (5.15)

❐ If mB ≥ µB

fγB
(γB) =

NA∑
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(−1)k
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exp
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(νB−t)st

B


∆B

2

νB∑

t=1

(νB − t)st − kγB


 . (5.16)

5.2 SECRECY METRICS

In this section, based on the above formulations given in 5.1.4, analytical expressions for the SOP,

ASC and high-SNR approximations of the SOP and ASC under TAS/MRC configuration by assuming

κ-µ shadowed fading channels are derived.

5.2.1 SOP Analysis

As in the SOP analysis for the NWDP model, it is considered a silent eavesdropper whose CSI is

not availabe for Alice. Therefore, Alice selects a constant secrecy rate RS to transmit information to

Bob. In practice, this configuration is associated with a passive eavesdropping attack (see Section

2.1.2.2). By using (5.11a),(5.13) and (5.12a),(5.14) into (2.5), the SOP expressions can be obtained

as stated in the following Proposition.
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Proposition 12. The SOP for mi < µi and mi ≥ µi with i ∈ {B,E} over i.i.d. κ-µ shadowed fading

channels can be obtained as (5.17) and (5.18), respectively.

SOP =

NA∑

k=0

(−1)k

(
NA

k

) k∑

c=0

(
k

c

) ∑
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
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. (5.17)

SOP =

NA∑
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×
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b
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×
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2

+
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B
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. (5.18)

Proof. See Appendix E.2.

5.2.2 Asymptotic SOP Analysis

Here, an asymptotic closed-form formulation of the SOP is derived to gain more insights into the

impact of the κ-µ shadowed’s fading parameters on the PLS performance of TAS/MRC configuration.

For that purpose, it is considered the behaviour at the high SNR regime of the legitimate link, where

γB → ∞ while γE is kept fixed, i.e., the case in which Alice (A) is very close to Bob (B) and Eve (E)

is located far away (see Section 2.1.2.3). Our aim is to express the asymptotic SOP expression in
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the form (2.7). Therefore, the expression for the asymptote of the SOP over κ-µ shadowed fading

channels is given in the following Proposition.

Proposition 13. The asymptotic closed-form expression of the SOP over i.i.d. κ-µ shadowed can be

obtained as

SOP∞ ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B τNBµB

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

mNEmE

E

Γ (NEµE) (µEκE +mE)
NEmE

×
(
µE (1 + κE)

γE

)−NANBµB

2F1

(
NEmE, NANBµB +NEµE, NEµE,

κEµE

mE + κEµE

)

× Γ (NANBµB +NEµE) . (5.19)

Proof. See Appendix E.3.

Remark 5. Comparing (2.7), i.e., SOP∞ ≃ Gcγ
−Gd

B with respect to (5.19), it can be noticed that

the secrecy diversity gain is given by Gd = NANBµB. This means that, the secrecy diversity gain

is directly affected by the number of antennas (i.e., NA and/or NB) or the number of wave clusters

arriving at Bob. Interestingly, neither the LoS condition through κB nor the LoS fluctuation through

mB affect the secrecy diversity order. This fact plays a pivotal role in the secrecy performance of the

system (as will be discussed in Numerical Results Section). On the other hand, notice that the fading

parameter µE corresponding to the eavesdropper channel does not affect the secrecy diversity gain

of the underlying system (see Fig. 5.5).

5.2.3 ASC Analysis

In this section, it is assumed an active eavesdropping scenario, where the CSIs of both main and

eavesdropper channels are known at Alice. Unlike the passive eavesdropping scenario, in an active

case, Alice can now adapt her transmission rate according to any achievable secrecy rate RS such

that RS ≤ CS (see Section 2.1.2.4). Next, by substituting the necessary formulations in (2.8) that

were derived in Section 5.1.4, the ASC expressions over i.i.d. κ-µ shadowed fading channels under

TAS/MRC system are given as stated in the following Proposition.

Proposition 14. The ASC closed-form expressions for mi ≥ µi and mi < µi with i ∈ {B,E} over

i.i.d. κ-µ shadowed fading channels can be formulated as (5.20), and (5.21), respectively.
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(5.21)
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Proof. See Appendix E.4.

It is worth mentioning that although the ASC expressions presented in this apart are long-drawn,

they are given in terms of known functions, facilitating their implementation in mathematical software

packages such as MATLAB and Wolfram Mathematica.

5.2.4 Asymptotic ASC Analysis

This section derives a closed-form asymptotic ASC expression to assess the system performance

in the high-SNR regime. Herein, as in the asymptotic SOP analysis, it is considered the scenario

where γB goes to infinity, while γE is kept unchanged. Plugging the respective formulations obtained

in Section 5.1.4 into (2.12), the asymptotic ASC expressions under κ-µ shadowed are given in the

following Proposition.

Proposition 15. The asymptotic ASC expressions for mi < µi and mi ≥ µi with i ∈ {B,E} over i.i.d.

κ-µ shadowed fading channels are given in (5.22) and (5.23), respectively.
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AB
1,ηB+1−z




st


U




ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq




− 1

ln 2

(
exp

(
1

∆E
1

) ηE∑

j=1

AE
1,j

ηE−j∑

r=0

Γ
(

−r, 1
∆E

1

)

r!

(
1

∆E
1

)r

Γ (1 + r) + exp
(

1
∆E

2

) νE∑

j=1

AE
2,j

νE−j∑

r=0

Γ
(

−r, 1
∆E

2

)

r!

×
(

1

∆E
2

)r

Γ (1 + r)

)
. (5.22)

C
∞
S ≃ log2(NBγB) + log2(e)

NA∑

k=1

(
NA

k

) ∑

ρ(k,νB)

(−1)kk!
s1!···sνB

!




νB∏

t=1




(
NBγB

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st




× W




νB∑

t=1

(νB − t)st


− 1

ln 2
exp

(
1

∆E
2

)
βE∑

j=0

BE
j

νE−j−1∑

r=0

1

r!

(
1

∆E
2

)r

Γ (1 + r) Γ

(
−r, 1

∆E
2

)
.

(5.23)

where U(u) and W(w) are obtained by
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U(u) =





C + ln
(

(k−c)NBγB

∆B
1

+ cNBγB

∆B
2

)
, for u = 0

−
(

NBγB(c∆B
1 +(k−c)∆B

2 )
∆B

1 ∆B
2

)−
(∑

ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

)

×Γ
(∑ηB

t=1(ηB − t)st +
∑νB

q=1(νB − q)pq

)
, otherwise.

and

W(w) =





C + ln
(

kNBγB

∆B
2

)
, for w = 0

−
(

kNBγB

∆B
2

)−
(∑

νB

t=1
(νB−t)st

)
Γ
(∑νB

t=1(νB − t)st

)
, otherwise.

(5.24)

Proof. See Appendix E.5.

5.3 SOME PLOTS AND DISCUSSIONS

This section provides illustrative numerical results along with Monte Carlo simulations to verify the

proposed analytical derivations. In all plots, as a consequence of using the κ-µ shadowed fading

statistics proposed in [128], it is considered that the fading severity parameters (i.e., µi and mi for

i ∈ {B,E}) take integer values. Indeed, it is assumed integer values for the following reasons: (i)

the shape parameter µB,E was originally defined in the κ-µ fading model as the number of clusters

of multipath waves propagating in a certain environment [127]. So, as asserted in [127], the consid-

eration that the parameters, µB,E to take integer values is related to the physical model for the κ-µ

distribution; and (ii) in practice, the impact of restricting the fading parameter mB,E to take integer

values is noticeable only in severe shadowing environments (i.e., low values of mB,E). For medium

to mild shadowing scenarios (i.e., high values of mB,E), the impact of constraining mB,E to take in-

teger values is even more negligible [128]. Furthermore, in all curves, Monte Carlos simulations are

denoted with markers.

Fig. 5.2 compares the SOP as a function of γB for different numbers of transmit antennas, NA, and

a fixed number of receiving antennas, i.e., NB = NE = 2. Also, the fading parameters are set as: RS

= 1 bps/Hz, γE = 8 dB, µi = 2, κi = 2, and mi = 3 for i ∈ {B,E}. Note that in all instances, our

analytical expressions, for exact and asymptotic SOP, perfectly match with Monte Carlo simulations.

Here, our goal is to analyze the impact of NA on the secrecy diversity gain of the legitimate channels

for the considered cases. Therefore, based on the asymptotic plots, it can be seen that the antenna

configuration at Alice clearly contributes to the slope of the SOP in a proportional way. On one hand,

this means that the decay of the SOP is steeper (i.e., better secrecy performance) as the number

of transmit antennas increases. On the other hand, as the number of transmit antennas decreases

the SOP is impaired and the decay is not so pronounced. These results are in coherence with the

insights provided in Remark 5.
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Figure 5.2: SOP vs. γB, for various numbers of transmit antennas, NA, and a fixed number of
receive antennas, NB = NE = 2. The setting parameter values are: RS = 1 bps/Hz, γE = 8 dB,
µi = 2, κi = 2, and mi = 3 for i ∈ {B,E}. Markers denote Monte Carlo simulations.

Fig. 5.3 presents the SOP vs. γB for different numbers of eavesdroppers antennas, NE, and fixed

number of antennas at the legitimate nodes, NA = NB = 2. The remainder parameters are set to: RS

= 1 bps/Hz, γE = 8 dB, µi = 3, and κi = 5, for i ∈ {B,E}. In this scenario, the goal is to explore the

impact of having light (mB = mE = 10) or heavy (mB = mE = 1) shadowing on the LoS components

at both Bob and Eve in an environment with multiple antennas. From all curves, it can be observed

that the combination of mild shadowing in the LoS components with a reduced number of antennas

at Eve derives into a better secrecy performance, as expected. Conversely, secrecy performance

always worsens when the shadowing is heavy in the LoS components at Bob or many antennas are

used at the eavesdropper. In short, considering the following factors at the eavesdropper side: (i)

a reduced number of antennas, and (ii) heavy shadowing in the LoS components is beneficial from

the PLS perspective.

Fig. 5.4 illustrates the SOP as a function of γB by considering different numbers of receiving antennas

NB, and fixed number of antennas NA = NE = 2. The other parameters are setting as follows: RS

= 2 bps/Hz, γE = 8 dB, µi = 1, and mi = 2 for i ∈ {B,E}. In this scenario, it is considered small

(κB = κE = 1.5) and large (κB = κE = 10) LoS components on the received wave clusters for a

different number of antennas at Bob. From all instances, it can be observed that the joint effect of

increasing the number of Bob’s antennas (which improves the secrecy diversity gain) and strong LoS

components (κB = κE = 10) leads to a significant improvement on the secrecy performance.
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Figure 5.3: SOP vs. γB, for various numbers of eavesdroppers antennas, NE, and a fixed number
antennas, NA = NB = 2. Markers denote Monte Carlo simulations, whereas the solid and dash-
dotted lines represent analytical solutions.
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Figure 5.4: SOP vs. γB, for different numbers of receive antennas, NB, and unchanged number of:
(i) receive antennas, NE = 2, and (ii) transmit antennas, NA = 2. Markers denote Monte Carlo
simulations, whereas the solid and dash-dotted lines represent analytical solutions.
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µB = 2, 3, 4, 5.

µE = 2, 3, 4, 5.

Figure 5.5: SOP vs. γB, for NA = NB = 2, NE = 3, and different received wave clusters, µB, and
µE. The setting parameter values are: RS = 2 bps/Hz, γE = 8 dB, κi = 4, and mi = 5 for i ∈ {B,E}.
The solid and dash-dotted lines represent analytical solutions.

This result is linked to the fact that NB directly influences the slope of the SOP, as shown in Remark

5. However, in the opposite scenario (wherein both NB and κi for i ∈ {B,E} decrease), note that the

secrecy performance significantly deteriorates.

Fig. 5.5 shows the SOP vs. γB for NA = NB = 2, NE = 3 for different clusters, µB and µE. The

parameters are set to: RS = 2 bps/Hz, γE = 8 dB, κi = 4, and mi = 5 for i ∈ {B,E}. For the

scenarios, the aim is to investigate the influence of the number of wave clusters at the receiver nodes

on the secrecy performance. Here, it is considered two cases: (i) µE is kept fixed, whereas µB goes

from 2 to 5; (ii) µB is kept unchanged, whereas µE goes from 2 to 5. In the former case, it is observed

that the secrecy performance improves as µB decreases. This fact confirms our finding in Remark

5, where µB impacts in the secrecy diversity order of the system. In the latter case, notice that

regardless of the µE value, the slope of the SOP remains identical. This fact corroborates that the

secrecy diversity order of the system is not affected by the number of received wave clusters at the

eavesdropper (see Remark 5). From a secrecy perspective, this result provides valuable insight into

the design and implementation criteria of future mobile networks over generalized fading conditions.

Then, Fig. 5.6 shows the SOP against the κi values with fixed fluctuation in the LoS components

of each cluster at the receiver sides, i.e., mi = 3 for i ∈ {B,E}. For all curves, the configuration

parameters are as follows: NA = 3, NB = NE = 2, RS = 3 bps/Hz, γE = 8 dB, and γB = 25

dB. Here, the goal is to investigate the achievable SOP when the LoS components, i.e. κi (for
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Figure 5.6: SOP vs. κi, with NA = 3, NB = NE = 2, and fixed mi = 3 for i ∈ {B,E}. The setting
parameter values are: RS = 3 bps/Hz, γE = 8 dB, and γB = 25 dB. Markers denote Monte Carlo
simulations.

i ∈ {B,E}) increase. From all curves, it can be seen three scenarios for the SOP behavior regarding

the configuration of parameters. For instance, for µi > mi (with i ∈ {B,E}), increasing the received

power through the LoS components is detrimental for the secrecy performance, which may seem

counter-intuitive at a first glance. In fact, the case with µB > mB (note that µE becomes irrelevant

as indicated in Fig. 5.5) indicates that the dominant components associated to LoS are affected

by a larger fading severity than the scattering diffuse counterpart. Hence, the secrecy performance

worsens as κB increases. Conversely, when µi < mi (with i ∈ {B,E}), the SOP is enhanced as the

LoS components increase. For the specific case where µi = mi (with i ∈ {B,E}), notice that the

SOP does not vary according to the parameter κi (for i ∈ {B,E}). Such an observation is because

if µi = mi (for i ∈ {B,E}), this implies that both the scattering and the shadowed LoS components

in each cluster experience the same fading severity. Thus, SOP becomes independent of κi in this

configuration.

Fig. 5.7 depicts the ASC vs. γB, for different setups of NA, NB, and NE. The parameters are set to:

γE = 8 dB, µi = 2, mi = 1 (high fluctuation), and κi = 5 (LoS case) for i ∈ {B,E}. From all figures,

it is straightforward to see that for the scenarios with severe fluctuation in the LoS components, an

excellent strategy to improve the CS is to equip Bob with more antennas than Alice. In the opposite

scenario, when Eve’s capabilities (e.g., more antennas) are better than those of legitimate peers, the

secrecy performance is compromised.
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Figure 5.7: ASC vs. γB, for different configurations of NA, NB, and NE. The corresponding param-
eter values are: γE = 8 dB, µi = 2, mi = 1, and κi = 5 for i ∈ {B,E}. Markers denote Monte Carlo
simulations.

Finally, Fig. 5.8 shows the ASC as a function of γB, considering different numbers of receiving an-

tennas at Bob, i.e., NB, and a fixed number of antennas at both source and eavesdropper, i.e.,

NA = NE = 2. The remainder parameters are set to: γE = 8 dB, and µi = mi = 2 for i ∈ {B,E}.

From all instances, notice that CS is not affected by increasing the power of the LoS components at

the receiver sides (κi = 1.5 to κi = 10 for i ∈ {B,E}). This result confirms that an increase in the

power of the LoS components does not always favor the CS performance. This observation is linked

to the discussions in Fig. 5.6, so CS is independent of the κi value. Obviously, this channel behavior

changes when mi ≥ µi or mi < µi (for i ∈ {B,E}). In addition, in Fig. 5.7 and Fig. 5.8, it can be

seen that the asymptotic ASC curves tightly approximate the Monte Carlo simulations and the exact

analytical values in the high-SNR regime.

5.4 CONCLUSIONS

This chapter have explored how different propagation mechanisms such as LoS condition (i.e., weak

or strong), LoS fluctuation, and clustering of the scattered multipath waves impact on the secrecy

performance of MIMO wiretap channels. Specifically, the analyzed results have shown that the effect

of combining strong LoS components with a weak fluctuation and a rich scattering condition in the le-

gitimate channel favors the system’s secrecy performance. However, whenever the LoS components

arriving at Bob suffer a more considerable fading severity than the multipath clustering counterpart
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Figure 5.8: ASC vs. γB, for different numbers of receive antennas, NB, and fixed number of an-
tennas, NA = NE = 2. The corresponding parameter values are: γE = 8 dB, and µi = mi = 2
for i ∈ {B,E}. Markers denote Monte Carlo simulations, whereas the solid and dash-dotted lines
represent analytical solutions.

(i.e. mB < µB), the secrecy performance worsens as κB is increased. Furthermore, it was observed

that the asymptotic behavior of the system depends not only on the number of antennas of the le-

gitimate pairs (as expected) but also on the scattering environment (i.e., µB) of the legitimate link.

Conversely, the multipath waves on the eavesdropper’s (i.e., µE) side play no role in the asymp-

totic performance in the TAS/MRC configuration. These findings are crucial insights to be taken

into account in the design criteria of the next networks over generalized fading conditions. Finally, it

was verified that the role of the fading parameters at the eavesdropper becomes less important as

γB > γE.
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6 PHYSICAL LAYER SECURITY OF RECONFIGURABLE

INTELLIGENT SURFACE-ASSISTED COMMUNICATIONS

WITH PHASE ERRORS

This chapter explores the secrecy performance of a reconfigurable intelligent surface (RIS)-assisted

wireless communication system in the presence of an eavesdropper node. Specifically, knowing that

the perfect phase estimation of the phase shifts induced by the composite propagation channels

through the RIS is unfeasible in practice, the aim is to study the secrecy transmission via RIS with

phase errors. Scaling laws of the legitimate and eavesdroppers signal-to-noise ratios with different

numbers of reflecting elements show an excellent secrecy performance even in assuming imperfect

phase estimation at the RIS. The overall results show the great potential of RIS-aided communica-

tions to improve PLS in post-5G networks.

6.1 SYSTEM MODEL

As illustrated in Fig. 6.1, it is considered an RIS-aided wireless communication scenario consisting

of one source node Alice (A), one legitimate node Bob (B), one eavesdropper Eve (E), and an RIS,

which assists the legitimate communication. The RIS helps the source’s transmission by passively

reflecting the signal to the legitimate destination. However, due to the wireless medium’s broadcast

nature, the incident signals could be intercepted by the eavesdropper. Hence, RIS’s primary task is

to adjust the phase shift of the signals by using reflecting elements to increase the information rate at

the destination but decrease the information leakage at the eavesdropper. In the setup, it is assumed

that the direct link is neglected, and all nodes are equipped with a single antenna, while the RIS has n

low-cost passive reflecting units R1 . . . Rn. Also, Hi,1 denotes the fading channel coefficient between

the source A and the reflecting element Ri, whereas Hi,b and Hi,e are the fading channel coefficients

between Ri and the legitimate receiver B and the eavesdropper E, respectively. Without loss of

generality, the fading coefficients are normalized with unitary power, and the corresponding average

magnitudes are given ∀i = 1 . . . n by a1 = E{|Hi,1|}, a2,b = E{|Hi,b|} and a2,e = E{|Hi,e|}. Notice

that {a1, a2,b, a2,e} ≤ 1 in all instances, where the equality only holds in the limit of a deterministic

fading channel, i.e., in the absence of fading. Also, ab =
√
a1a2,b is defined. According to [159], the
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Figure 6.1: IRS-aided secure communication from Alice (A) to a legitimate receiver Bob (B) in the
presence of an eavesdropper Eve (E). This figure is based on [132].

received signal at the legitimate destination (i.e., B) can be formulated as

Yb =
√
PTLb

n∑

i=1

Hi,1e
jφiHi,bX +Wb, (6.1)

where X is the transmitted symbol, PT indicates the transmit power at A, Lb encompasses the path

losses for the A-R and R-B links, the antenna gains and reflection losses, and Wb is the AWGN term

with N0 power.

Ideally, given the phases ∠Hi,1 and ∠Hi,b , the RIS designs the phase shifts φi in (6.1) so as to

cancel the overall phase shift ∠Hi,1 + ∠Hi,b, which maximizes the SNR at the legitimate receiver

[160]. However, in practice, due to the imperfect phase estimation and the limited quantization of

phase state at the RIS, a residual random phase error Θi persists, i.e., φi = −∠Hi,1 − ∠Hi,b + Θi.

Thus, the complex channel at the legitimate receiver can be expressed as

Hb =
1

n

n∑

i=1

∣∣Hi,1‖Hi,b

∣∣ ejΘi , (6.2)

and (6.1) can be rewritten as

Yb = n
√
γ0,bHbX +Wb. (6.3)

On the other hand, the received signal at the eavesdropper’s side can be formulated as

Ye =
√
γ0,e

n∑

i=1

Hi,1e
jφiHi,eX +We, (6.4)

where γ0,e = PTLe/N0 denotes the average SNR at the eavesdropper in the case of a single reflector

RIS, i.e., n = 1, and the parameter Le is defined in a similar way as Lb. Now, it is worth mentioning

that due to the phase shifts φi are designed by the RIS to compensate for the effects of the fading
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channels of the legitimate path, the residual phase error Ψi at the eavesdropper path with certainty

will be much large than the legitimate link and, whenever ∠Hi,e ∼ U [−π, π), so Ψi ∼ U [−π, π) [161]

regardless of the generic phase distribution of ∠Hi,1. Based on this, the complex channel observed

by the eavesdropper is given by

He =
1

n

n∑

i=1

∣∣Hi,1‖Hi,e

∣∣ ejΨi , (6.5)

thus (6.4) can reformulated as

Ye = n
√
γ0,eHeX +We. (6.6)

Here, even though the legitimate and eavesdropper’s links share the A-R links, As will be seen

later, under some premises He and Hb are independent. Next, the instantaneous SNR at both the

legitimate and the eavesdropper links are given by

γb = n2γ0,b|Hb|2, (6.7)

γe = n2γ0,e|He|2, (6.8)

where γ0,b = PTLb/N0 and γ0,e = PTLe/N0 are the average SNRs at both the legitimate and the

eavesdropper sides in the case of a single reflector RIS, i.e., n = 1. With the previous definitions, the

SNRs distributions of both the legitimate and the eavesdropper paths are derived below.

6.2 SNR DISTRIBUTIONS

6.2.1 Distribution of γb

As proved by the authors in [159], for sufficiently large n, the distribution of Hb is that of a non-

circularly symmetric complex Gaussian RV with Ub = ℜ(Hb) and Vb = ℑ(Hb), so that Ub ∼
N
(
µ, σ2

Ub

)
and Vb ∼ N

(
0, σ2

Vb

)
, where the scaled parameters are µ = ϕ1a

2
b, σ2

Ub
= 1

2n

(
1 + ϕ2 − 2ϕ2

1a
4
b

)

and σ2
Vb

= 1
2n (1 − ϕ2), and ϕj are the jth circular moments of Θi. This fact implies that Rb = |Hb| fol-

lows the Beckmann distribution [162] and then, the average SNR at the legitimate receiver γb follows

a (squared) Beckmann distribution given by

fγb
(γ) =

c

4πq

∫ 2π

0

e
−

c

(
√

γ cos(θ)−

√
Kγb
K+1

)2

2q2 − cg sin2(θ)
2 dθ, (6.9)
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where K = µ2/(σ2
Ub

+ σ2
Vb

), q = σUb
/σVb

and γb = E{γb}. Now, by replacing the above definitions in

the set of Beckmann’s parameters [1], it follows that

K = n
ϕ2

1a4
b

1−ϕ2
1a4

b

, (6.10)

q =

√
1+ϕ2−2ϕ2

1a4
b

1−ϕ2
, (6.11)

γb = n2γ0,b

[
ϕ2

1a
4
b + 1

n

(
1 − ϕ2

1a
4
b

)]
. (6.12)

Note that in (6.12), as claimed by the authors in [159], the average SNR of the legitimate link scales

with n2. Also, it can be observed that the LoS condition of the equivalent scalar channel is char-

acterized by K that grows with n. Notably, the non-circular symmetry caused by the phase errors

captured by q ∈ [1,∞) is independent of the number of elements of the RIS. Notice that in the lack

of phase errors, Hb becomes a real Gaussian RV and then |Hb| follows a folded normal (FN), which

is a particular case of the κ-µ distribution when µκ−µ = 1/2. Therefore, the PDF of the FN model is

given by [163, Eq. (2)]

fγb
(γ) =

1/2(1 +K)
3
4 γ− 1

4

K− 1
4 γ

3
4

b exp( K
2 )

exp

(
− (1 +K)γ

2γb

)
I−1/2



√
K(1 +K)γ

γb


 , (6.13)

where the parameters K and γb are given by (6.10) with ϕ1 = 1, and (6.12), respectively. Also, the

distribution of Rb is well approximated by a Nakagami-m distribution in [159], and hence γb can be

approximated by a gamma distribution denoted by

fγb
(γ) =

mmγm−1

Γ(m)γm
b

exp

(
−mγ

γb

)
, (6.14)

in which the shape parameter m = n
2

ϕ2
1a4

b

1+ϕ2−2ϕ2
1a4

b

and scale parameter γb = n2γ0,bϕ
2
1a

4
b [159]. It is

worth mentioning that due to the dissimilar behavior of the FN, the Beckmann and the Nakagami-m

distributions in terms of diversity order [117], it is considered all such distributions in the derivation

of the PLS secrecy metrics, in order to obtain insights on when these distributions are useful to

approximate the true distribution of γb given in (6.7).

6.2.2 Distribution of γe

As mentioned beforehand, RIS technology designs its phase shifts according to the legitimate path.

Therefore, the phase distributions for each of the eavesdropper’s R-E paths are uniformly distributed,

as pointed in [161]. Based on this fact, the distribution of Re = |He| follows a Rayleigh model with

[1] The entire mathematical derivation to arrive at the set of parameters K, q, and γ
b

for the scenario under
consideration is given in [159].
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PDF given by

fRe
(r) =

2r

γe

exp

(
− r2

γe

)
, (6.15)

where according to [159, Corol. 2], it follows that E{R2
e} = 1/n. Now, by using a standard change

of variables, γe = Re
2, i.e., fγe

(γ) =
fRe (

√
γ)

2
√

γ , the distribution of γe follows a exponential distribution,

expressed as

fγe
(γ) =

1

γe

exp

(
− γ

γe

)
, (6.16)

wherein γe = nγ0,e.

Remark 6 (Scaling law for γe). Distinctly, the average SNR at the eavesdropper scales with n,

whereas the average SNR at the legitimate receiver scales with n2. Therefore, the scaling law for the

ratio of legitimate and wiretap SNRs is

γb

γe

∣∣∣∣
n↑

= n
γ0,b

γ0,e

[
ϕ2

1a
4
b +

1

n

(
1 − ϕ2

1a
4
b

)]
(6.17)

A useful insight from (6.17) is that the use of sufficiently large n (i.e., RIS’s elements) can provide an

enormous improvement of the SNR of the legitimate path compared to the eavesdropper’s counter-

part.

Finally, notice that (6.2) and (6.5) reveals that the legitimate and eavesdropper’s links share a com-

mon part through, i.e, Hi,1. However, both channels were proven to be equivalent and statistically

independent. Therefore, the PLS problem can be reformulated as a simpler one based on scalar

channel representations given above, with tractable analytical expressions, as stated in the next Sec-

tion.

Theorem 1 (Independence of legitimate and eavesdropper paths). Let us consider the equivalent

legitimate and eavesdropper channels in (6.2) and (6.5). Therefore, Hb and He are independent if

∠Hi,e ∼ U [−π, π). Indeed, this is the case of considering Rayleigh fading channels for the RIS to

eavesdropper’s links.

Proof. See Appendix F.

6.3 PLS PERFORMANCE ANALYSIS

This section derives analytical closed-form solutions for the chief PLS secrecy metrics defined pre-

viously. Three different scenarios are considered in our analysis, namely: (a) no phase errors –

FN/Rayleigh case; (b) with phase errors – Beckmann/Rayleigh case; (c) with phase errors – Nak-

agami/Rayleigh case.
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6.3.1 SOP Performance Analysis

Here, the SOP metrics for the FN/Rayleigh, Nakagami/Rayleigh and Beckmann/Rayleigh scenarios

are introduced below.

Lemma 1. The SOP and the asymptotic SOP expressions (i.e., γb → ∞) for the FN/Rayleigh (FR)

scenario in the absence of phase errors for RIS-aided communications are given by

SOPFR = 1 −Q0.5


√

K,

√
(1 +K)γ

γb


+ e

τ−1
τγe

+
Kγbs

K+1−2γbs

√
(K + 1)

K + 1 − 2γbs

×Q0.5



√

K(K + 1)

K + 1 − 2γbs
,

√
2

(
K + 1

2γb

− s

)
(τ − 1)


 , (6.18)

SOP
∞
FR ≃ e

−K/2+
τ−1
τγe

√
τγe(1+K)

2γb
Γ̃
(

1.5, τ−1
τγe

)
, (6.19)

in which τ = 2RS , and s = − 1
τγe

. It is worth mentioning that the Marcum Q-function of order 0.5 can

be easily computed with the help of the Gaussian Q function as Q0.5(a, b) = Q(b− a) +Q(b+ a).

Proof. See Appendix G.1.

Lemma 2. The SOP and the asymptotic SOP expressions (i.e., γb → ∞) for Beckmann/Rayleigh

(BR) scenario considering phase errors in the RIS-aided communications are given by

SOPBR = Fγb
(τ − 1) + exp

(
τ−1
τγe

)
Mu

γb

(
− 1

τγe
, τ − 1

)
. (6.20)

SOP
∞
BR ≃ exp

(
− K(1+q2)

2q2

)
(1+K)(1+q2)(γeτ+τ−1)

2qγb
(6.21)

where Fγb
(·) denotes the CDF of a squared Beckmann distribution [164, Eq. (7)] , which is computed

through Matlab code given in appendix I. Also Mu
γb

(·, ·) is the upper-incomplete moment generating

function (IMGF) [164, Eq. (3)] of the RV γb, which follows a squared Beckmann distribution. The

Mu
γb

(·, ·) is carried out numerically through an inverse Laplace transformation [165] as in [164, Eq.

4]. So, an efficient algorithm in Matlab for the implementation of Mu
γb

(·, ·) is provided in appendix J.

Proof. See Appendix G.2.
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Lemma 3. The SOP and the asymptotic SOP expressions (i.e., γb → ∞) for Nakagami/Rayleigh

scenario (NR) considering phase errors in the RIS-aided communications can be expressed as

SOPNR = γ̃
(
m, (τ−1)m

γb

)
+ e

τ−1
τγe

Γ̃

(
m,(τ−1)

(
m
γb

+ 1
τγe

))

(
1+

γb

mτγe

)m , (6.22)

SOP
∞
NR ≃ 2RSmΓ (1 +m)mm−1

Γ(m)

(
γe

γb

)m

. (6.23)

Proof. See Appendix G.3.

Note that all secrecy metrics in Lemmas 1-3, are given in closed-form fashion except for the Beck-

mann/Rayleigh case in (6.20). Now, from [166, Table I] the secrecy diversity order for each of the

approximations are given by µκ−µ = 1/2, 1 and m for the FR, BR and NR cases, respectively. The

implications arising from this observation will be discussed in the Numerical Results Section.

6.3.2 ASR Performance Analysis

In this section, the ASR metrics in the FN/Rayleigh, Nakagami/Rayleigh and Beckmann/Rayleigh

scenarios are formulated.

Lemma 4. The ASR and the asymptotic ASR expressions (i.e., γb → ∞) over FN/Rayleigh (FR)

scenario in the absence of phase errors for RIS-aided communications are formulated by

RS−FR ≈ 1

ln 2

0.5(1 +K)3/4

γb
3/4K−1/4 exp (0.5K)

∞∑

z=0

1

z!Γ (0.5 + z)


0.5

√
K(1 +K)

γb




2z−1/2

×G3,1
2,3


 (1 +K)

2γb

∣∣∣∣
(−0.5 − z), (0.5 − z)

(0), (−0.5 − z), (−0.5 − z)


− 1

ln 2

∞∑

l=0

(0.5K)
l

l! exp (0.5K)

×
Floor(l−0.5)∑

z=0

1

z!

(
0.5(1 +K)

γb

)z

exp

(
1

γe

+
0.5 (1 +K)

γb

)
Γ (1 + z)

× Γ

(
−z, 1

γe

+
0.5 (1 +K)

γb

)
(6.24)

R∞
S−FR ≈ log2

(
γb

1 +K

)
+ log2(e)

[
ψ
(

1
2

)
+K 2F2

(
1, 1; 2, 3

2 ; −K
2

) ]
−e1/γe

ln 2
E1

(
1

γe

)
(6.25)

where
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f1(x) =
exp (x)E1 (x)

[(
(1 +K) (1 + q2) + 2xγb

) (
(1 +K) (1 + q2) + 2q2xγb

) ]5/2

[ (
1 + q2

)

(1 +K)
−1

× exp

(
− Kγb

(
1 + q2

)
x

(1 +K) (1 + q2) + 2q2xγb

)
γb

(
(1 +K)

(
1 + q2

)
+ 2xγb

)

×



(
1 + q2

)3

(1 +K)
−3 +

2
(
1 + q2

)

(1 +K)
−1

(
K + (3 +K) q2 + q4

)
xγb + 8q4x2γ2

b



]

(6.26)

f2(x) =

exp

(
Kγb(1+q2)φ

(1+K)(1+q2)−2φγb

)
(1 +K)

(
1 + q2

)
exp (φ)

√(
(1 +K) (1 + q2) − 2φγb

) (
(1 +K) (1 + q2) − 2q2φγb

)
(1 − e−x)

(6.27)

and φ = −1

(1−e−x)γe

.

Proof. See Appendix H.1.

Lemma 5. The ASR and the asymptotic ASR expressions (i.e., γb → ∞) for Beckmann/Rayleigh

(BR) scenario considering phase errors in the RIS-aided communications are given by

RS−BR ≈ 1

ln 2

[
h∑

i=1

wif1 (ki) − e1/γeE1

(
1

γe

)
+ e1/γe

h∑

i=1

wif2 (ki)

]
(6.28)

R∞
S−BR ≈ 1

ln 2

[
h∑

i=1

wif1 (ki) − e1/γeE1

(
1

γe

)]
(6.29)

Proof. See Appendix H.2.

Lemma 6. The ASR and the asymptotic ASR expressions (i.e., γb → ∞) for Nakagami/Rayleigh

scenario (NR) considering phase errors in the RIS-aided communications can be expressed as

RS−NR ≈ 1

ln 2

Floor(m−1)∑

z=0

1

z!

(
m

γb

)z

exp

(
m

γb

)
Γ (1 + z)

[
Γ

(
−z, m

γb

)
− exp

(
1

γe

)

× Γ

(
−z, m

γb

+
1

γe

)]
(6.30)

R∞
S−NR ≈ log2 (γb) + log2(e)

[
ψ (m) − ln(m)

]
−e1/γe

ln 2
E1

(
1

γe

)
. (6.31)

Proof. See Appendix H.3.
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Notice that all secrecy metrics in Lemmas 4-6, are given in analytical closed-form expression includ-

ing the Beckmann/Rayleigh case. In the next section, some secrecy metrics are evaluated to explore

the impact of the phases errors in wireless communications via RIS technology.

6.4 NUMERICAL RESULTS

Here, the main goal is to assess the effect of phase errors on the secrecy performance metrics

for the proposed scenarios, as well as the goodness of the scalar approximations for the equiva-

lent composite channel in RIS-assisted communications. For the links between Alice and the RIS,

and between the RIS and Bob, it is considered Rician fading, i.e, the shape parameter K = 1.

The links between the RIS and Eve are assumed to be Rayleigh distributed, so that a1 = a2,b =
√
π/(4(K + 1))1F1

(
−1/2, 1,−K

)
, and a2,e =

√
π/2. [2]. In our analysis, it is assumed phase er-

rors due to the finite number of phase shifts available at the RIS. Therefore, only 2nb phases for

nb ≥ 1 can be configured at the RIS, where nb is the number of quantization bits used to encode

the phase shifts [159]. In this sense, Θi in (6.2) is assumed to be uniformly distributed over the in-

terval [−2−nbπ, 2−nbπ]. Consequently, it follows that ϕ1 =
sin(2−nb π)

2−nb π
and ϕ2 =

sin(2−nb+1π)
2−nb+1π

[159] for

(6.10)-(6.12). In all figures, the system parameters are set to: γ0,e = 10 dB, and the ideal case of

no phase errors (i.e., nb → ∞) is included as a reference in all instances. The exact values for the

secrecy metrics are obtained through Monte Carlo simulations. The analytical secrecy performance

metrics in the folded normal/Rayleigh (FR), Nakagami/Rayleigh (NR), and Beckmann/Rayleigh (BR)

cases are included using the results in Sections 6.3.1 and 6.3.2 for the SOP and ASR, respectively.

Also, analytical expressions derived in our analysis are denoted using solid lines and asymptotic

expressions are represented using dashed lines.

Figs. 6.2-6.3 denote the ASR as a function of γ0,b for different numbers of elements (i.e., n) at

the RIS. Such figures explore how imperfect phase estimation, i.e, nb = 1 and nb = 2 affects the

secrecy performance of the system. From Figs. 6.2-6.3, it can be extracted the following insights:

(i) increasing the number of reflecting elements (i.e., n) allows for improving the ASR for a fixed

γ0,b, thanks to the different scaling laws of the legitimate and wiretap average SNRs derived in our

analysis (see, Remark 6); (ii) equivalent scalar approximations concerning FR (no phase errors) and

BR (phase errors) approximate very well the real distribution regardless of the number of reflecting

elements, while the NR approximation underestimates the true ASR as n decreases; (iii) asymptotic

ASR formulations reveal the ASR’s slope for the high SNR values; (iv) ASR expressions exhibit a

linear behavior in log-scale for a wide range of SNRs, and such a range of SNRs widens with n; (v)

the performance degradation with nb = 2 bits is small, which confirms that state-of-the-art solutions

for RIS surfaces [167] may be enough to obtain a secrecy performance close to the case of no phase

[2] For detailed information on such assumptions, please refer to [159]
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Figure 6.2: ASR as a function of γ0,b for different values of n for nb = 1. Markers correspond to the
legitimate and eavesdropper channels computed with (6.2) and (6.5), respectively.
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Figure 6.3: ASR as a function of γ0,b for different values of n for nb = 2. Markers correspond to the
legitimate and eavesdropper channels computed with (6.2) and (6.5), respectively.
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Figure 6.4: SOP as a function of γ0,b for different values of n for nb = 1. Markers correspond to the
legitimate and eavesdropper channels computed with (6.2) and (6.5), respectively.

errors (i.e., ideal case); and (vi) the worst secrecy performance of the proposed approximations is

achieved when the RIS has a one-bit phase shifter (i.e., nb = 1). This fact corroborates that smaller

nb values mean larger phase errors.

Figs. 6.4-6.5 shows the SOP as a function of γ0,b, for different values of n. As in the previous ASR

case, it is considered that the RIS have specific discrete phase shifts, i.e., nb = 1 and nb = 2 to

evaluate the secrecy performance of the system. Here, some similar insights, as in the ASR, can

be deduced from both figures: (i) for nb = 2, a good secrecy performance can be attain compared

to the ideal case (i.e., no phase errors), and (ii) the SOP performance deteriorates when nb = 1,

which means that the phase estimation in the RIS is poor. Moreover, some relevant differences are

observed: while the equivalent scalar approximations work well in all instances for large n, there are

substantial differences between the exact simulated results and the FR, BR, and NR cases for lower

n. Regarding insights on SOP’s slope, the asymptotic curves may induce confusion if not interpreted

correctly. This is, while all asymptotic results are tight (i.e., they all coincide with the analytical SOP

expressions for each case), the different secrecy diversity order inherent to each of the equivalent

scalar approximations is translated into a different decay of the high-SNR slopes. Because of the

high line-of-sight condition of the FR and BR scalar approximations, the asymptotes kick-in at very

low SOP values; conversely, the NR asymptote seems to better capture the abrupt decay of the

SOP for the operating range of probability values. In any case, asymptotic analyses for the SOP

should be exercised with caution when using the equivalent scalar approximations, as they may not

be representative of the actual behavior of the real RIS-assisted channels.

111



-30 -20 -10 0 10 20 30 40 50 60
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

S
ec

re
cy

 O
u

ta
g

e 
P

ro
b

ab
il

it
y

Sim (ideal)

Sim (phase errors)

Analytical FR

Asymptotic FR

Analytical BR

Asymptotic BR

Analytical NR

Asymptotic NR

n = 64

n = 16

n = 16

n = 4
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6.5 CONCLUSIONS

This chapter has provided an overview of the promising RIS technology for achieving a smart and

reconfigurable environment in post-5G wireless networks. This work have formulated three approxi-

mations to capture the real secrecy performance of an RIS-aided communication with phase errors.

In this context, the results have shown that even when RIS has a limited phase resolution of 2 bits, the

different scaling laws for the desired and eavesdropper’s SNRs allow for improving the PLS perfor-

mance RIS-assisted communications. Based on this, RIS has proven useful in improving the physical

layer security in future next networks. Finally, the simulation’s results have validated the effectiveness

of the proposed equivalent scalar channel approximations.
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7 CONCLUSIONS

This chapter summarizes the general conclusions drawn from the thesis and then outlines some

future research works.

7.1 THESIS CONCLUSIONS

Overall, topics including: (i) sums and ratio of RVs taken from generalized distributions; (ii) PLS over

generalized fading conditions, and (iii) PLS of RIS-assisted wireless communications with imperfect

phase estimation have been thoroughly explored in this thesis. Next, the major contributions of each

chapter are summarized.

Chapter 3 has investigated sums and ratios of RVs taken from different types of fading channel

models. The main contributions of this chapter were threefold: 1) a fast and simple approximation

to the PDF of the sum of independent Nakagami-m RVs was derived by using a mixture of two

Nakagami-m RVs. In this approximation, the approximate distribution parameters were estimated

using an unsupervised EM learning algorithm. Furthermore, the ABEP metric over multibranch re-

ceivers was presented as an application example concerning the sums of Nakagami-m RVs; 2) a

unified framework was presented to approximate the sums of generalized RVs. Specifically, the

asymptotic matching method was applied to approximate the sum of κ-µ RVs. Based on the numeri-

cal results, the asymptotic matching has proven to provide an excellent fit from medium to high-SNR

regime. From a practical perspective, this region is of paramount importance because it describes

a wireless communication system’s energy efficiency (see [117] for a nice discussion on this topic);

and 3) closed-form expressions for the PDF, CDF, MGF of the ratio of two RVs envelopes taken from

α-µ distributions were obtained in terms of univariate Fox H-function. Since the single Fox H-function

has not yet been implemented in popular mathematical packages, this work have provided both fast

convergent series expressions derived using the residues theorem and efficient implementation for

the single Fox H-function in MATHEMATICA®Wolfram. Finally, to illustrate the applicability of the

obtained expressions, a practical example of PLS over α-µ channels was presented.

Chapter 4 has explored the secrecy performance of the classical Wyner’s wiretap model, where

the main and the eavesdropper channels experience NWDP fading.
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In such chapter, novel analytical expressions for the SOP, asymptotic SOP, ASC, and asymptotic ASC

were derived in terms of elementary functions in the communication theory. From the SOP asymptotic

analysis, useful insights into how the NWDP fading parameters of both legitimate and eavesdropper

channels (e.g., KB
dB, KE

dB, αn,B, αn,E) affect the system performance in a high-SNR regime were

also provided. Furthermore, based on the numerical results, this research has been supported the

need for using ray-based fading channel models in those scenarios in which an arbitrary number of

dominant specular components are considered (e.g., mm-Wave communications).

Chapter 5 has provided new equivalent representations for the κ-µ shadowed CDFs in order to

derive either maximum or minimum of an arbitrary number of i.i.d. κ-µ shadowed RVs. The illustrative

plots and discussions showed how different propagation factors (e.g., LOS condition, LOS fluctua-

tion, and clustering of scattered multipath waves) impact the PLS performance over MIMO wiretap

channels. Specifically, secrecy expressions such as SOP, asymptotic SOP, ASC, and Asymptotic

ASC were developed in a TAS/MRC configuration. The numerical results manifested that strong LOS

conditions and rich scattering waves in the legitimate path are favorable for the secrecy performance.

Furthermore, it was revealed that, the asymptotic behavior depends not only on the number of an-

tennas of the legitimate pairs but also on the clustering of scattered waves (i.e., µB) of the legitimate

link. Conversely, the eavesdropper link’s scattering environment (i.e., µE) plays no role in the secrecy

performance of the system in the high-SNR regime.

Chapter 6 has investigated the PLS performance of a wireless communication system sup-

ported by a RIS with phase errors. Closed-form expressions for the SOP, asymptotic SOP, ASR, and

asymptotic ASR were derived in terms of well-known functions. By knowing that the perfect phase

estimation of the reflection phases induced by the composite channel through the RIS is unfeasible in

practice; the analyzed results exhibited how the phase errors affect the secrecy performance of RIS-

aided wireless communications. In this context, our analytical framework showed clear evidence that

even when the RIS has a limited precision configuration of 2 bits in the estimation phase process; the

ratio of the legitimate and wiretap SNRs allows for improving the PLS performance in RIS-assisted

communications.

Overall, the information security at the physical layer level is an approach that relies heavily on

the assumption that the channel between the transmitter and the eavesdropper is a degraded version

of the channel between legitimate nodes. In this regard, the application of PLS for 5G applications is

not yet a close reality, as due to the broadcast nature of the wireless medium, the legitimate channel

cannot be guaranteed to be an enhanced version of the wiretap channel at all times. Nonetheless,

given that the emerging new-generation environment exhibits a versatility of physical phenomena

that converge in the wireless medium, our research showed that, under certain fading conditions, the

PLS performance can remarkably improve in generalized fading conditions. Specifically, this work

inferred that PLS techniques should be designed based on both the intrinsic features of the channel

(e.g., LoS, NLoS conditions, LoS fluctuations, presence of dominant rays and clustering) and the use
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of revolutionary technologies (e.g., RIS and Holographic MIMO).

Unfortunately, up to 5G, the propagation channel has been out of control of communications

design engineers. In this concern, this research showed that the radio environment becomes pro-

grammable, controllable, and intelligent by leveraging the advantages of RIS technology. In fact,

post-5G networks can be designed not only based on the end-points of the communications (i.e.,

transmitters and receivers) but also on the customization of the radio environment. Moreover, based

on our findings in Chapter 6, RIS can effectively create a "dedicated" channel between two legitimate

entities. Hence, PLS will finally flourish as a defense method for providing security information to

upcoming wireless networks by complementing cryptography-based algorithms.

7.2 FUTURE RESEARCH DIRECTIONS

Then, a non-exhaustive list of research topics to extend the results discussed in this thesis is pro-

vided.

1. The sum of independent channel envelopes that follow NWDP distributions remains an open

topic of research. Based on these results, the secrecy performance over NWDP MIMO wiretap

channels is an intriguing research issue.

2. Second-order statistics, including level crossing rate and average fade duration, are still an

open issue for the product and ratio of independent generalized fading channel distributions.

3. An engaging topic is to extend the asymptotic matching method to approximate sums of corre-

lated RVs such as Nakagami-m, κ-µ, κ-µ shadowed, NWDP, among others. These approxima-

tions will allow overcoming the inherent issues of the exact statistical solutions while guaran-

teeing an outstanding performance for practical regimes of interest, i.e., medium to high-SNR

values.

4. Nowadays, the secrecy performance has been extensively explored for the design of secure

transmissions over both conventional and generalized fading channels in the context of infinite

block-length. Nevertheless, the impact of having finite block-length secrecy codes on PLS

performance under generalized channels is still an open field of research.

5. A most realistic wireless channel model is crucial for the performance evaluation of RIS-

assisted communications. In this regard, an interesting research topic to be addressed is a

propagation channel model that captures (i) key fundamentals aspects of the so-called geo-

metric near-field of the RIS elements and (ii) spatial correlations among the RIS elements.

6. Based on the results of Chapter 6, it is the paramount importance to investigate the PLS

performance of RIS-aided wireless communications over realistic propagation conditions (e.g.,

spatial correlation among RIS units).
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A DERIVATION OF THE ABEP EXPRESSIONS

A.1 PROOFS OF PROPOSITION 1

ABEP Approximation for non-coherent modulations

Substituting (3.9) and (2.62) into (2.60), it arrives to

Pe ≈
2∑

i=1

ωim
mi

i

Γ(mi)Ω
mi

i

∫ ∞

0

r2mi−1 exp

(
−r2

(
mi

Ωi
− gEb

N0

))
dr

︸ ︷︷ ︸
I1

. (A.1)

Here, with the aid of [168, Eq. (3.326.2)] to solve the integral in I1, the ABEP for non-coherent

schemes can be expressed as in (3.26), which concludes the proof.

ABEP Approximation for coherent modulations

Inserting (3.9) and (2.63) into (2.60), this gets to

Pe ≈
2∑

i=1

ωim
mi

i

Γ(mi)Ω
mi

i

∫ ∞

0

r2mi−1 exp

(
−r2mi

Ωi

)
erfc

(
r
√
gEb/N0

)
dr

︸ ︷︷ ︸
I2

. (A.2)

Next, using [169, Eq. (4.3.9)] to solve the integral in I2, it follows that

I2 =

(
Ebg

N0

)−mi
Γ(2mi)2F1

(
mi,

1
2 +mi; 1 +mi; − mi

EbgΩi
N0

)

Γ(mi)4mi
. (A.3)

Replacing (A.2) into (A.3), the ABEP for coherent schemes can be expressed as in (3.27), which

concludes the proof.

A.2 PROOFS OF PROPOSITION 2

ABEP expression in the low SNR regime for non-coherent modulations

ii



By considering the Maclaurin series[1] [149, Eq. (25.2.24)]

f(x) =
n∑

k=0

(x)
k
f (k)(0)

k!
+Rn, (A.4)

where, Rn is a remainder term known as the Lagrange remainder [149, Eq. (25.2.25)]. Now, by using

the second term of Maclaurin expansion in (A.4) for the denominator of (3.26), because at low SNR

regime, it is assumed that Eb

N0
in the higher order coefficients are zero. So, this gets to

(
Ebg

N0
+
mi

Ωi

)mi

≈
(
mi
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+ gΩi
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)mi
(
Ebg

N0

)
+
g2(mi − 1)Ω2

i

2mi

(
mi

Ωi

)mi
(
Eb

N0

)2

. (A.5)

Next, by substituting (A.5) into (3.26), this yields

Pe ≈
ω1

2

(
m1

Ω1

)m1

(
m1

Ω1

)m1

+m1

(
Ebg
N0

)(
m1

Ω1

)m1−1 +

(1−ω1)
2

(
m2

Ω2

)m2

(
m2

Ω2

)m2

+m2

(
Ebg
N0

)(
m2

Ω2

)m2−1 . (A.6)

After simple mathematical manipulations in (A.6), the expression given in (3.28) is achieved.

ABEP expression in the low SNR regime for coherent modulations

For this scenario, when Eb

N0
in (3.27) goes to zero, the term − 1

ΩigEb

miN0

goes to ∞, thus the Hyperge-

ometric function 2F1 (·, ·; ·; ·) in (3.27) also goes to zero. Bearing this in mind, our aim is to find an

expression in a closed-form that complies with the aforementioned requirements. For this purpose,

by replacing the Hypergeometric Function in (3.27) by its mathematical identity given in [154, Eq.

(07.24.17.0054.01)]

2F1

(
a, b; c; −1

p

)
=

(
1 +

1

p

)−a

2F1

(
a, c− b; c;

1

p+ 1

)
, (A.7)

therefore, this yields

Pe ≈
ω1Γ(2m1) 2F1

(
m1,

1
2 ; 1 +m1; 1

EbΩ1g

N0m1
+1

)

(
1 + 1

EbΩ1g

N0m1

)m1

Γ(m1)
(

4EbΩ1g
N0m1

)m1
+

(1 − ω1)Γ(2m2) 2F1

(
m2,

1
2 ; 1 +m2; 1

EbΩ2g

N0m2
+1

)

(
1 + 1

EbΩ2g

N0m2

)m2

Γ(m2)
(

4EbΩ2g
N0m2

)m2
.

(A.8)

Then, by substituting the regularized Hypergeometric function 2F1 (·, ·; ·; ·) by its the integral definition

[1] In particular, the Maclaurin series is a special case of the Taylor series where the function is expanded
around zero.
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given in [154, Eq. (07.24.07.0001.01)] as

2F1 (a, b; c; p) =
1

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1 − t)
−b+c−1

dt

(1 − tp)a
, (A.9)

into (A.8), it follows that

Pe ≈

ω1Γ(2m1)

Γ( 1
2 )Γ(m1+ 1

2 )

∫ 1

0
t− 1

2 (1−t)m1− 1
2 dt

(1− t
EbΩ1g

N0m1
+1

)m1

(
1 + 1

EbΩ1g

N0m1

)m1

Γ(m1)
(

4EbΩ1g
N0m1

)m1
+

(1−ω1)Γ(2m2)

Γ( 1
2 )Γ(m2+ 1

2 )

∫ 1

0
t− 1

2 (1−t)m2− 1
2 dt

(1− t
EbΩ2g

N0m2
+1

)m2

(
1 + 1

EbΩ2g

N0m2

)m2

Γ(m2)
(

4EbΩ2g
N0m2

)m2
. (A.10)

Now, performing some algebraic operations in (A.10), it arrives to

Pe ≈
ω1Γ(2m1)

Γ( 1
2 )Γ(m1+ 1

2 )

∫ 1

0

t− 1
2 (1−t)m1− 1

2

(
1+

EbΩ1g

N0m1

)m1
dt(

1+
EbΩ1g

N0m1
−t
)m1

(
1 + 1

EbΩ1g

N0m1

)m1

Γ(m1)
(

4EbΩ1g
N0m1

)m1
+

(1−ω1)Γ(2m2)

Γ( 1
2 )Γ(m2+ 1

2 )

∫ 1

0

t− 1
2 (1−t)m2− 1

2

(
1+

EbΩ2g

N0m2

)m2
dt(

1+
EbΩ2g

N0m2
−t
)m2

(
1 + 1

EbΩ2g

N0m2

)m2

Γ(m2)
(

4EbΩ2g
N0m2

)m2
.

(A.11)

With the purpose of simplifying the mathematical complexity in (A.11) for finding a closed-form formu-

lation at low SNR regime, by replacing Eb

N0
with zero in the terms corresponding to the Hypergeometric

function 2F1 (·, ·; ·; ·). Thus, this leads to

Pe ≈
ω1Γ(2m1)

Γ( 1
2 )Γ(m1+ 1

2 )

∫ 1

0
t− 1

2 (1−t)m1− 1
2 (1+0)m1 dt

(1+0−t)m1

Γ( 1
2 )Γ(m1 + 1

2 )

(
1 + 1

EbΩ1g

N0m1

)m1

Γ(m1)
(

4EbΩ1g
N0m1

)m1
+

(1−ω1)Γ(2m2)

Γ( 1
2 )Γ(m2+ 1

2 )

∫ 1

0
t− 1

2 (1−t)m2− 1
2 (1+0)m2

(1+0−t)m2 dt(
1 + 1

EbΩ2g

N0m2

)m2

Γ(m2)
(

4EbΩ2g
N0m2

)m2
.

(A.12)

After some mathematical manipulations and by solving the corresponding integrals in (A.12), it follows

that

Pe ≈
ω1Γ(2m1)

[
Γ( 1

2 )
]2 ( 4EbΩ1g

N0m1

)−m1

Γ( 1
2 )Γ(m1 + 1

2 )

(
EbΩ1g

N0m1
+1

EbΩ1g

N0m1

)m1

Γ(m1)

+
(1 − ω1)Γ(2m2)

[
Γ( 1

2 )
]2 ( 4EbΩ2g

N0m2

)−m2

Γ( 1
2 )Γ(m2 + 1

2 )

(
EbΩ2g

N0m2
+1

EbΩ2g

N0m2

)m2

Γ(m2)

. (A.13)

Finally, by performing simple mathematical manipulations in (A.13), the expression in (3.29) is reached.

This completes the proof.

A.3 PROOFS OF PROPOSITION 3

ABEP expression in the high-SNR regime for non-coherent modulations

In the high-SNR regime, it follows that Pe in (3.26) goes to zero as Eb

N0
becomes larger. Here, our

goal is to achieve an expression that meets this assumption. To attain this,one can start by using the

iv



binomial theorem [170, Eq. (5.13)] for x, y, and r ∈ R

(x+ y)
r

= xr

(
1 +

y

x

)r

, (A.14)

into (3.26), therefore, this gets to

Pe ≈
ω1

2

(
m1

Ω1g

)m1

(
Eb

N0

)m1
(

1 +
m1
Ω1

Ebg

N0

)m1
+

(1−ω1)
2

(
m2

Ω2g

)m2

(
Eb

N0

)m2
(

1 +
m2
Ω2

Ebg

N0

)m2
. (A.15)

Now, without loss of generality, it is assumed m2 > m1. Based on this assumption, one can consider

that
(

Eb

N0

)m2

grows to infinity more quickly than
(

Eb

N0

)m1

at high SNR (i.e., Eb

N0
goes to ∞), so, this

leads to

Pe ≈
ω1

2

(
m1

Ω1g

)m1

(
Eb

N0

)m1

(1 + 0)
m1

+ 0. (A.16)

From (A.16), the general expression of ABEP at high SNR can be calculated as in (3.30), where

m = min{m1,m2}. This completes the proof.

ABEP expression in the high-SNR regime for coherent modulations

It is worth mentioning that in the high SNR regime, when Eb

N0
in (3.27) goes to ∞, the term − 1

ΩigEb

miN0

goes to zero and consequently the Hypergeometric function 2F1 (·, ·; ·; ·) in (3.27) tends to 1
Γ(1+m)

[2] as

will be proved below. Taking this into consideration, the first step is to substitute the Hypergeometric

Function in (3.27) by (A.9), then, this gets to

Pe ≈

ω1Γ(2m1)


 1

Γ( 1
2 +m1)Γ( 1

2 )

∫ 1

0
tm1− 1

2 (1−t)− 1
2 dt

(1+ t
EbΩ1g

N0m1

)m1




Γ(m1)
(

4EbΩ1g
N0m1

)m1
+

(1 − ω1)Γ(2m2)


 1

Γ( 1
2 +m2)Γ( 1

2 )

∫ 1

0
tm2− 1

2 (1−t)− 1
2 dt

(1+ t
EbΩ2g

N0m2

)m2




Γ(m2)
(

4EbΩ2g
N0m2

)m2
.

(A.17)

In this case, a procedure similar to that applied to analyze the high SNR regime of ABEP for non-

coherent modulation is considered (i.e., it is assumed m2 > m1). Hence, once again, one can

consider that
(

Eb

N0

)m2

grows to infinity more quickly than
(

Eb

N0

)m1

at high SNR (i.e., Eb

N0
goes to ∞),

thus, this leads to

Pe ≈ω1Γ(2m1)(
Eb

N0

)m1




1
Γ( 1

2 +m1)Γ( 1
2 )

∫ 1

0
tm1− 1

2 (1−t)− 1
2 dt

(1+0)m1

Γ(m1)
(

4Ω1g
m1

)m1


 . (A.18)

[2] The parameter m is governed by the lower value between m1, and m2 as will be seen in developing this
appendix.
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Herein, by solving the integral in (A.18), it follows that

Pe ≈ω1Γ(2m1)(
Eb

N0

)m1




1
Γ( 1

2 +m1)Γ( 1
2 )

× Γ( 1
2 +m1)Γ( 1

2 )

Γ(1+m1)

Γ(m1)
(

4Ω1g
m1

)m1


 . (A.19)

Finally, after a process of simplification in (A.19), the general formulation as in (3.31) can be attained,

where m = min{m1,m2}. This completes the proof.
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B DERIVATION OF THE κ-µ EXPRESSIONS

B.1 PROOF OF PROPOSITION 4

Substituting the series expansion of I0(·) [154, id. (03.02.02.0001.01)] and exponential function

exp (·) [149, Eq. (25.2.24)]

Iv(z) =

∞∑

k=0

1

Γ (k + v + 1) k!

(
z

2

)2k+v

, (B.1a)

exp(−z) =

∞∑

k=0

(−1)kxk

k!
. (B.1b)

into (3.32), this yields

fRi
(r) =

2µi(1 + κi)
1+µi

2 rµi

κ
µi−1

2
i Ω

µi+1

2
i exp(µiκi)

(
1

Γ (µi)


µir

√
κi(1 + κi)

Ωi




µi−1

− 1

Γ (µi)

(
µi(1 + κi)r

2

Ωi

)

×


µir

√
κi(1 + κi)

Ωi




2+µi−1

+
Γ (2 + µi)

−1

2!2!

(
µi(1 + κi)r

2

Ωi

)2

µir

√
κi(1 + κi)

Ωi




4+µi−1

− . . .

)
.

(B.2)

Now, by rewriting (B.2) in the format of (3.36), this leads to

fRi
(r) =

∞∑

n=0

2µi(1 + κi)
1+µi

2 (−1)
n

κ
µi−1

2
i Ω

µi+1

2
i exp(µiκi)

Γ (k + µi)
−1

n!n!

(
µi(1 + κi)

Ωi

)n

µi

√
κi(1 + κi)

Ωi




2n+µi−1

︸ ︷︷ ︸
ai,n

r

bi,n︷ ︸︸ ︷
4n+ 2µi − 1.

(B.3)

From (B.3), the coefficients of the Maclaurin series for the κ-µ case are formulated as in (3.35), thus

accomplishing the proof.

B.2 DERIVATION OF THE EQUATION SYSTEM FOR κ-µ CASE

From (3.45b), the matching b̃0 = b0 with the help of (3.47b) and (3.43b) can be expressed as
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2µ̃− 1 = (M − 1) +

M∑

i=1

bi,0. (B.4)

Using, (3.35b) with n = 0 into (B.4), this yields

2µ̃− 1 = (M − 1) +

M∑

i=1

2µi − 1

2µ̃− 1 = M − 1 −M + 2

M∑

i=1

µi. (B.5)

After simple mathematical simplifications in (B.5), the µ̃ parameter can be formulated as in (3.49a).

Next, with the help of (2.32), (3.45c) can be expressed as (3.49b). Now, using (3.35) with n = 0,

(3.43a) can be rewritten as

a0 =

∏M
i=1

[
2µi(1+κi)

1+µi
2

κ
µi−1

2
i

Ω
µi+1

2
i

exp(µiκi)Γ(µi)

(
µi

√
κi(1+κi)

Ωi

)µi−1

Γ(1 + 2µi − 1)

]

Γ
(
M +

∑M
i=1 2µi − 1

)

=

∏M
i=1

[
2µi(1+κi)

1+µi
2

κ
µi−1

2
i

Ω
µi+1

2
i

exp(µiκi)Γ(µi)

(
µi

√
κi(1+κi)

Ωi

)µi−1

Γ(2µi)

]

Γ
(

2
∑M

i=1 µi

) . (B.6)

Finally, by matching (B.6) with (3.47), (3.43a) is expressed as in (3.49c). This completes the proof.
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C DERIVATION OF THE RATIO STATISTICS

C.1 PROOFS OF PROPOSITION 5

PDF of X

Substituting (3.58) into (3.50), it follows that

fX(x) =
α1α2x

α1µ1
2 −1

4β
α2µ2

2
2 β

α1µ1
2

1 Γ(µ2)Γ(µ1)

∫ ∞

0

y
α2µ2

2 +
α1µ1

2 −1G1,0
0,1



(
xy

β1

)α1
2
∣∣∣∣ 0


G1,0

0,1



(
y

β2

)α2
2
∣∣∣∣ 0


 dy.

(C.1)

After some mathematical manipulations in (C.1), it follows that

fX(x) =
α1x

α1µ1
2 −1

2β
α2µ2

2
2 β

α1µ1
2

1 Γ(µ2)Γ(µ1)

∫ ∞

0

wµ2+kµ1−1G
I1

1,0

0,1


 w

β
α2
2

2

∣∣∣∣ 0


G1,0

0,1




wk

(
x
β1

)−α1
2

∣∣∣∣ 0


 dw,

︸ ︷︷ ︸
I1

(C.2)

where w=yα2/2 and recalling that k= α1

α2
. Then, by using [154, Eq. (07.34.21.0012.01)], I1 in (C.2)

can be solved in a straightforward manner as

I1 =


 1

β
α2
2

2




−(µ2+kµ1)

H1,1
1,1



(
xβ2

β1

)α2
2
∣∣∣∣

(1 − µ2 − kµ1, k)

(0, 1)


 . (C.3)

Finally, by replacing I1 into (C.2), the expression in (3.60) can be obtained.

CDF of X

Replacing (3.58) and (3.59) into (3.51), this leads to

FX(x) =
α2x

µ1α1
2

2β
α2µ2

2
2 β

α1µ1
2

1 Γ(µ2)Γ(µ1)

∫ ∞

0

y
α2µ2

2 +
α1µ1

2 −1G1,0
0,1



(
y

β2

)α2
2
∣∣∣∣ 0


G1,1

1,2



(
xy

β1

)α1
2
∣∣∣∣

1 − µ1

0,−µ1


 dy.

(C.4)

Here, a similar procedure as in the derivation of the PDF of X is employed. That is, by replacing
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w = yαY /2 and k = α1

α2
into (C.4), it follows that

FX(x) =
x

µ1α1
2

β
α2µ2

2
2 β

α1µ1
2

1 Γ(µ2)Γ(µ1)

∫ ∞

0

wµ1k+µ2−1G
I2

1,0

0,1


 w

β
αY

2

Y

∣∣∣∣ 0


G1,1

1,2



(
x

β1

)α1
2

wk

∣∣∣∣
1 − µ1

0,−µX


 dw.

︸ ︷︷ ︸
I2

(C.5)

Now, by using [154, Eq.(07.34.21.0009.01)], I2 in (C.5) can be solved in a straightforward manner as

I2 =


 1

β
α2
2

2




−(µ1k+µ2)

H1,2
2,2



(
xβ2

β1

)α1
2
∣∣∣∣

(1 − µ1, 1), (1 − µ1k − µ2, k)

(0, 1), (−µ1, 1)


 . (C.6)

Finally, substituting (C.6) into (C.5), a closed-form expression for the CDF of X=γ1/γ2 can be calcu-

lated as in (3.61). This completes the proof.

MGF of X

Replacing fX(x) given as in (3.60) into (3.53), this leads to

MX(s) =
α1

2Γ(µ2)Γ(µ1)

(
β2

β1

)α1µ1
2
∫ ∞

0

x
α1µ1

2 −1e−sxH1,1
1,1



(
xβ2

β1

)α1
2
∣∣∣∣

(1 − µ2 − kµ1, k)

(0, 1)


 dx.

(C.7)

Substituting the Fox H-function in (C.7) by its Mellin-Barnes type contour integral as in [155, Eq.

(1.2)], interchanging the order of integrations, and performing some simplifications, this gets to

MX(s) =
α1

(
β2

β1

)α1µ1
2

2Γ(µ2)Γ(µ1)

∫ ∞

0

x
α1µ1

2 −1 exp (−sx)
1

2πj

∫

C
Γ(z)Γ(µ2 + kµ1 − kz)



(
xβ2

β1

)α1
2




−z

dzdx

=
α1

(
β2

β1

)α1µ1
2

2Γ(µ2)Γ(µ1)j

1

2πj

∫

C
Γ(z)Γ(µ2 + kµ1 − kz)



(
β2

β1

)α1
2




−z ∫ ∞

0

x
α1µ1

2 − zα1
2 −1 exp (−sx) dx

︸ ︷︷ ︸
I3

dz

(C.8)

Here, with the help of [168, Eq. (3.351.3)], I3 can be solved as

I3 = s− µ1α1
2 +

α1z

2 Γ

(
µ1α1

2
− α1z

2

)
. (C.9)

Thus, (C.8) can be formulated as

MX(s) =
α1

(
β2

β1

)α1µ1
2

s− α1µ1
2

2Γ(µ2)Γ(µ1)

1

2πj

∫

C
Γ(z)Γ(µ2 + kµ1 − kz)Γ

(
µ1α1

2
− α1z

2

)

(
β2

sβ1

)α1
2




−z

dz.

︸ ︷︷ ︸
I4

(C.10)
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Then, by substituting I4 in (C.10) by its corresponding Fox H-function with the use of [155, Eq. (1.2)],

the expression in (3.62) is obtained, thus accomplishing the proof.

Higher Order Moments of X

The n-th order moment for a RV X is defined as (3.52). However, to calculate the n-th moment of

the ratio of squared α-µ distributed RVs, X=γ1/γ2, the identity for the product of two statistically

independent RVs is employed, i.e., E
[
(γ1γ2)n

]
= E [γn

1 ]E [γn
2 ] [171]. Now, for the case of the ratio of

two squared RVs, the approach is interested in solving E
[
(γ1/γ2)n

]
, thus is necessary to determine

the n-th moment of the inverse of a RV γ2. To this end, let us define A = 1/γ2 = 1/R2
2, such

that E
[
(γ1A)n

]
= E [γn

1 ]E [An]. Thus, by determining the moments of E [γn
1 ] and E [An], the higher

order moments of E [Xn] can be found. In order to compute E [An], it is defined Y2 as the inverse

of the envelope R2, i.e., Y2 = 1/R2. Hence, the moments of A can be determined by considering

E [An] = E
[
Y 2n

2

]
[53].

First, it is defined the n-th moment of the envelope of an α-µ RV. Then, from [123], it follows that

E [Rn] = Ωn Γ
(
µ+ n/α

)

µn/αΓ(µ)
. (C.11)

Next, by substituting (C.11) into E [Υn
1 ] = E

[
R2n

1

]
, this yields

E [γn
1 ] = Ω2n

1

Γ
(
µ1 + 2n/α1

)

µ
2n/α1

1 Γ(µ)
. (C.12)

Recalling that Y2 is the inverse of envelope R2 with PDF given in (2.27). Therefore, the PDF of Y2

can be expressed as in [172, Eq. (4)] by

fY2
(y) =

α2Ωµ2α2

2 y−1−α2µ2

µµ2

2 Γ(µ2)
exp

(
− Ωα2

2

µ2yα2

)
. (C.13)

From (C.13), the n-th moment E [Y n
2 ] can be expressed as [172]

E [Y n
2 ] = Ωn

2

Γ
(
µ2 − n/α2

)

µ
n/α2

2 Γ(µ2)
, n > µ2α2. (C.14)

Then, by inserting (C.14) into E [An] = E
[
Y 2n

2

]
, it follows that

E [An] = Ω2n
2

Γ
(
µ2 − 2n/α2

)

µ
2n/α2

2 Γ(µ2)
, n > µ2α2. (C.15)

Finally, by inserting (C.14) and (C.15) into into E [Xn] = E [Υn
1 ]E [An], the formulation in (3.63) is

reached, thus completing the proof.
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C.2 REPRESENTATION OF THE FOX-H FUNCTION AS A SUM OF

RESIDUES

Here, for illustration purposes, the Fox H-functions in (3.60)-(3.62) are expressed as a sum of

residues [173]. Therefore, by defining the Fox H-function as in [155, Eq. (1.1)], it follows that

Hm,n
p,q [z] = Hm,n

p,q


z
∣∣∣∣

(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)


 =

1

2πi

∫

C
Θ(s)z−sds, (C.16)

where m, n, p, q ∈ N, with 0 ≤ n ≤ p, 1 ≤ m ≤ q, z ∈ C. Here

Θ(s) =

{∏m
j=1 Γ

(
bj +Bjs

)}{∏n
j=1 Γ

(
1 − aj −Ajs

)}

{∏q
j=m+1 Γ

(
1 − bj −Bjs

)}{∏p
j=n+1 Γ

(
aj +Ajs

)} . (C.17)

An empty product is always interpreted as unity, Ai, Bj ∈ R+, ai, bj ∈ C, i = 1, . . . , p; j = 1, . . . , q.

In addition, C = (c− i∞, c+ i∞) is a contour of integration separating the poles of Γ(1 − aj − Ajs),

j = 1, · · · , n from those of Γ(bj + Bjs), j = 1, · · · ,m. On the other hand, the contour integral C
in (C.16) can be obtained by the sum of residues technique, evaluated at all poles of Θ(s) [155].

Hence,

1

2πi

∫

C
Θ(s)z−sds=

∞∑

h=0

lim
s→±χ(h)

(
s± χ(h)

)
Θ(s)z−s, (C.18)

where χ(h) is a specific pole of Θ(s). Now, using (C.16) and (C.17), H2 in (3.61) can be rewritten as

H2 =
1

2πi

∫

C

Γ(s)Γ (µ1 − s) Γ(kµ1 + µ2 − ks)z−sds

Γ(1 + µ1 − s)
, (C.19)

where the suitable contour C separates all the poles of Γ(s) to the left from those of Γ (µ1 − s) and

Γ(kµ1 +µ2 −ks) to the right. Then, it is possible to evaluate (C.19) as the sum of residues, as follows

H2 = S1 + S2, (C.20)

where, the analysis of the Fox H-function given in (C.19) has been split into two sums of residues[1],

according to the following ranges of values of k: (i) χ(h) = −h, for k ≤ 1; (ii) χ(h) = µ1 + h and

χ(h) = kµ1+µ2+h
k , for k ≥ 1. Now, by using (C.18) and the condition for k ≤ 1 into (C.19), the term S1

can be formulated as

[1] It is worth mentioning that S1 corresponds to the sum of residues with respect to the pole of Γ(s). On the
other hand, S2 corresponds to the sum of residues regarding the poles of Γ (µ1 − s) and Γ(kµ1 +µ2 −ks).
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S1 =
∞∑

h=0

lim
s→−h

Γ(s)Γ (µ1 − s) Γ(kµ1 + µ2 − ks)

(s+ h)
−1

Γ(1 + µ1 − s)zs

=
∞∑

h=0

zhΓ
(
k(h+ µ1) + µ2

)

(−1)
h

(h+ µ1)Γ (1 + h)
. (C.21)

Likewise, by using (C.18) and the condition for k ≥ 1 into (C.19), the term S2 can be expressed as

S2 = −
∞∑

h=0

lim
s→h+µ1

Γ(s)Γ (µ1 − s) Γ(kµ1 + µ2 − ks)

(s− h− µ1)
−1

Γ(1 + µ1 − s)zs
−

∞∑

h=0

lim
s→ kµ1+µ2+h

k

Γ(s)Γ (µ1 − s) Γ(kµ1 + µ2 − ks)
(
s− kµ1+µ2+h

k

)−1

Γ(1 + µ1 − s)zs

=

∞∑

h=0

z−h−µ1Γ (h+ µ1) Γ (−hk + µ2)

(−1)
h−2

Γ (1 − h)h!
+

∞∑

h=0

z− h
k

−µ1− µ2
k Γ
(

−h−µ2

k

)
Γ
(

h+kµ1+µ2

k

)

(−1)
h−2

Γ
(

−h+k−µ2

k

)
kh!

. (C.22)

By following a similar procedure as in the solution for H2, the series representation for H1 and H3 can

be obtained as in (3.64) and (3.66), respectively.
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C.3 MATHEMATICA IMPLEMENTATION FOR THE SINGLE FOX H-

FUNCTION

Tabla C.1: MATHEMATICA®IMPLEMENTATION OF THE FOX-H FUNCTION
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

H-Fox Function*)
Clear all;

FOX::InconsistentCoeffs = "Inconsistent coefficients!";

FOX[z_,a_,b_] := Module {},

where "z" is the argument of the Fox H Function, "a" and "b" are the

cofficient sequences of Fox H Function defined as:

a={{{a1,A1},...,{an,An}},{{an+1,An+1},...,{ap,Ap}}}

b={{{b1,B1},...,{bm,Bm}},{{bm+1,Bm+1},...,{bq,Bq}}}*)

Computation of θ s), See Eq. 32) *)
Pa=Function[s,Product[Gamma[1-a[[1,n,1]]-s a[[1,n,2]]],{n,1,Length[a[[1]]]}]];
Pb=Function[s,Product[Gamma[b[[1,n,1]]+s b[[1,n,2]]],{n,1,Length[b[[1]]]}]];
Qa=Function[s,Product[Gamma[a[[2,n,1]]+s a[[2,n,2]]],{n,1,Length[a[[2]]]}]];
Qb=Function[s,Product[Gamma[1-b[[2,n,1]]-s b[[2,n,2]]],{n,1,Length[b[[2]]]}]];
Theta=Function[s,Pa[s]Pb[s Qa[s Qb[s]];
(*Countour limiters Depends on numerator of θ(s
var[Gamma[x_]]:=x;
var Times[x_,y_]:= var Times[x],var Times[y] ;

RPoles=var[Pa[s]];
LPoles=var[Pb[s]];
ArrayPa=ConstantArray[0,Length[a[[1]]]];
ArrayPb=ConstantArray[0,Length[b[[1]]]];
If Length[a[[1]]] 1,ArrayPa[[1]]=s .Solve[RPoles 0,s],For i=1,i Length[a[[1]]],
i++,ArrayPa i=s .Solve RPoles i 0,s;;
If Length[b[[1]]] 1,ArrayPb[[1]]=s .Solve[LPoles 0,s],For j=1,j Length[b[[1]]],
j++,ArrayPb j=s .Solve LPoles j 0,s;;
(*Assignments
epsilon=Max[ArrayPb]+0.1;
R=Min[ArrayPa 0.1;;

W=80;
(*Evaluation
Print "Numerical Integration:";

value=
1

2 π I
NIntegrate Theta[s](z [s,

s,epsilon I W ,R epsilon I W,R epsilon+I W ,epsilon+I W ,

MaxRecursion→55;
(*Returning back the value

Return[value];;
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
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D DERIVATION OF THE SECRECY METRICS FOR THE

NWDP FADING MODEL

D.1 PROOFS OF PROPOSITION 6

D.1.1 SOP

Substituting (4.1) into (2.5), this leads to

SOP =

∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

)
1

γE

∞∑

zE=0

CzE

︸ ︷︷ ︸
C1

∫ ∞

0

exp

(
−γE

γE

)
LzE

(
γE

γE

)

× Υ

(
kB + 1,

(τγE + τ − 1)

γB

)
dγE. (D.1)

Using the series representation of the incomplete lower function [168, Eq. (8.352.1)]

Υ(1 + n, x) = n!


1 − exp (−x)




n∑

m=0

xm

m!





 (D.2)

into (D.1), the SOP can be rewritten as

SOP =

T1︷ ︸︸ ︷
C1kB!

∫ ∞

0

exp

(
−γE

γE

)
LzE

(
γE

γE

)
dγE

︸ ︷︷ ︸
I1

− C1kB!

kB∑

q=0

1

q!

(
1

γB

)q ∫ ∞

0

exp

(
−γE

γE

)

︸ ︷︷ ︸
I2

× LnE

(
γE

γE

)
exp

(
−τγE + τ − 1

γB

)
(τγE + τ − 1)

q
dγE

︸ ︷︷ ︸
I2

. (D.3)

Here, with the help of [168, Eq. (7.414.6)] the value of the integral I1 is γE when zE = 0 or zero

otherwise (i.e., zE 6= 0). In the former case, when zB → ∞, the T1 term can be approximated as

T1 =

∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

)
1

γE

∞∑

zE=0

CzE
kB!γE ≈ 1. (D.4)
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Next, by using [168, Eq. (1.111)]

(a+ x)
n

=

n∑

k=0

(
n

k

)
xkan−k (D.5)

into (D.3), I2 can be expressed as

I2 =

q∑

a=0

(
q

a

)
(τ − 1)

q−a
τa exp

(
−τ − 1

γB

)∫ ∞

0

LzE

(
γE

γE

)
γa

E exp

(
−γE

γE

− τγE

γB

)
dγE.

︸ ︷︷ ︸
I3

(D.6)

Then, by solving I3 with the help of [168, Eq. (7.414.7)]

∫ ∞

0

exp (−st) tβLα
n(t)dt =

Γ (β + 1) Γ (α+ n+ 1)

n!Γ (α+ 1)
s−β−1

2F1

(
−n, β + 1;α+ 1;

1

s

)
(D.7)

the I3 term is solved as

I3 =

(
1

γE

+
τ

γB

)−1−a

Γ (1 + a) 2F1

(
1 + a,−zE, 1,

γB

γB + γEτ

)
. (D.8)

Finally, by combining (D.3) to (D.8), the SOP can be formulated as in (4.4), which concludes the proof.

D.1.2 SOPA

Substituting (4.1) into (2.6), this leads to

SOPA =

∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

)
1

γE

∞∑

zE=0

CzE

︸ ︷︷ ︸
C1

∫ ∞

0

exp

(
−γE

γE

)
LzE

(
γE

γE

)
Υ

(
kB + 1,

τγE

γB

)
dγE.

(D.9)

Again, by using (D.2) into (D.9), the SOPA can be reformulated as

SOPA =

T2︷ ︸︸ ︷
C1kB!

∫ ∞

0

exp

(
−γE

γE

)
LzE

(
γE

γE

)
dγE

︸ ︷︷ ︸
I4

− C1kB!

kB∑

q=0

1

q!

(
1

γB

)q

τ q

∫ ∞

0

exp

(
−γE

γE

)

︸ ︷︷ ︸
I5

× LzE

(
γE

γE

)
exp

(
−τγE

γB

)
γq

EdγE.

︸ ︷︷ ︸
I5

(D.10)

Here, note that I4 is equivalent to I1. Therefore, the T2 term of the SOPA (i.e., C1kB!γE) can

be approximated to unity, as discussed in the previous proof. On the other hand, by using [168,
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Eq. (7.414.7)], I5 can be solved in closed-form fashion as

I5 =

(
1

γE

+
τ

γB

)−1−q

Γ (1 + q) 2F1

(
−zE, 1 + q, 1,

γB

γB + γEτ

)
. (D.11)

Finally, by replacing (D.11) and (D.10), the SOPA is reached as in (4.5), which completes the proof.

D.2 PROOFS OF PROPOSITION 7

D.2.1 SOP
∞

In the following, two approaches are used to calculate the asymptotic SOP.

D.2.1.1 Keeping γE Fixed and γB → ∞ (Approach I)

In order to approximate (4.1b) as γB → ∞, the following relationship is employed for the lower

incomplete gamma function Υ (a, x) ≃ xs/s as x → 0. Therefore, (4.1b) can be asymptotically

expressed by

FB(γB) ≃
∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

(kB + 1)!

(
zB

kB

)(
γB

γB

)kB+1

. (D.12)

Substituting (D.12) and (4.1a) into (2.6), it follows that

SOP∞ ≃
∞∑

zB=0

CzB

zB∑

kB=0

(−1)kB

(kB + 1)!

(
zB

kB

)(
1

γE

)(
τ

γB

)kB+1

×
∞∑

zE=0

CzE

∫ ∞

0

γkB+1
E exp

(
−γE

γE

)
LzE

(
γE

γE

)
dγE

︸ ︷︷ ︸
I6

(D.13)

Next, with the aid of (D.7) to solve I6 in (D.13), the asymptotic SOP can be expressed as in (4.6),

which concludes the proof.

D.2.1.2 Keeping γE Fixed and γB → ∞ (Approach II)

From [174, Eq. (10)], (4.1b) can be asymptotically formulated as

FB(γB) ≃ KNB
+ 1

γB

γBEPNB

[
exp

(
−PNB

ΩB

)]
, (D.14)
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where PNB
is given as in [174, Eq. (6)] by

PNB
= ΩNB

+ 2
∑

∆NB

Vl,BVs,B cos
(
θl,B − θs,B

)

= ΩNB
+ 2f(θ), (D.15)

with
{

(l, s) : l < s, l = 1 . . .NB − 1, s = 2 . . .NB

}
. Now, using [20, Eq. (44)]

Lβ
n(t) =

n∑

i=0

(−1)i

(
n+ β

n− i

)
ti

i!
(D.16)

to expand the Laguerre polynomial in (4.1a), it follows that

fE(γE) =
1

γE

exp

(
−γE

γE

) ∞∑

zE=0

CzE

zE∑

h=0

(−1)h

h!

(
zE

zE − h

)(
γE

γE

)h

. (D.17)

Next, by substituting (D.17) and (D.14) into (2.6), this gets to

SOP∞ ≃KNB
+ 1

γB

exp
(
−KNB

)
Eθ

[
exp

(
−2f(θ)

ΩB

)](
1

γE

)h+1 ∞∑

zE=0

CzE

zE∑

h=0

(−1)h

h!

(
zE

zE − h

)

×
∫ ∞

0

γh
E (τγE + τ − 1) exp

(
−γE

γE

)
dγE

︸ ︷︷ ︸
I7

. (D.18)

Finally, by using [168, Eq. (3.351.3)]

∫ ∞

0

xn exp (−µx) dx = Γ(n+ 1)µ−n−1 (D.19)

to solve I7, the asymptotic SOP is attained as in (4.7). This completes the proof.

D.3 PROOF OF PROPOSITION 8

Firstly, (4.1a) can be rewritten as

fi(γi) =
1

γi

exp

(
−γi

γi

)
C0L0

(
γi

γi

)
+

∞∑

zi=1

Czi
Lzi

(
γi

γi

)
 . (D.20)

Here, by using the identity Lβ
0 (x) = 1 [168, Eq. (8.97.3)] and obtaining C0 term from (4.3), (D.20) can

be expressed by

fi(γi) =
1

γi

exp

(
−γi

γi

)
1 +

∞∑

zi=1

Czi
Lzi

(
γi

γi

)
 . (D.21)
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Next, plugging (D.21) for i = B into (2.10), it follows that

CB =
1

γB ln 2

[∫ ∞

0

ln (1 + γB) exp

(
−γB

γB

)
dγB

︸ ︷︷ ︸
I8

+

∞∑

zB=1

CzB

∫ ∞

0

ln (1 + γB) exp

(
−γB

γB

)
LzB

(
γB

γB

)
dγB

︸ ︷︷ ︸
I9

]
.

(D.22)

Employing the identities [168, Eq. (4.337.2)], [175, Eq. (2.19.6.5)]

∫ ∞

0

exp(−µx) ln(1 + βx)dx =
1

µ
exp

(
µ

β

)
E1

(
µ

β

)
, (D.23a)

∫ ∞

0

exp (−µx) ln (1 + x)Lz (µx) dx = −Γ (z)U (1 + z, 2, c) . (D.23b)

the integrals in I8, and I9 can be solved in closed-form fashion, respectively. Next, for conve-

nience, (4.1b) is expanded as

Fi(γi) =

T3︷ ︸︸ ︷
C0Υ

(
1,
γi

γi

)
+

∞∑

zi=1

Czi

zi∑

ki=0

(−1)ki

ki!

(
zi

ki

)
Υ

(
ki + 1,

γi

γi

)
. (D.24)

Here, by substituting zi = 0 into (4.3), it follows that C0 = 1. Then, by replacing the lower incomplete

gamma function, i.e., Υ(·, ·) in T3 by its series representation given in (D.2), (D.24) can be rewritten

as

Fi(γi) =1 − exp

(
−γi

γi

)
+

∞∑

zi=1

Czi

zi∑

ki=0

(−1)ki

ki!

(
zi

ki

)
Υ

(
ki + 1,

γi

γi

)
. (D.25)

Substituting (D.25) for i ∈ {B,E} into (2.11), it follows that

L (γB, γE) =
1

ln 2

[∫ ∞

0

exp

(
−γE

(
1

γB
+ 1

γE

))

(1 + γE)
dγE

︸ ︷︷ ︸
I10

−
∞∑

zE=1

CzE

zE∑

kE=0

(−1)kE

kE!

(
zE

kE

)∫ ∞

0

exp
(

− γE

γB

)

(1 + γE)︸ ︷︷ ︸
I11

× Υ

(
kE + 1,

γE

γE

)
dγE

︸ ︷︷ ︸
I11

−
∞∑

zB=1

CzB

zB∑

kB=0

(
zB

kB

)
(−1)kB

kB!

∫ ∞

0

exp

(
− γE

γE

)

(1+γE) Υ

(
kB + 1,

γE

γB

)
dγE

︸ ︷︷ ︸
I12

+

∞∑

zB=1

CzB

zB∑

kB=0

(−1)kB

kB!

(
zB

kB

) ∞∑

zE=1

CzE

zE∑

kE=0

(−1)kE

kE!

(
zE

kE

)∫ ∞

0

1

(1 + γE)
Υ

(
kB + 1,

γE

γB

)

︸ ︷︷ ︸
I13

× Υ

(
kE + 1,

γE

γE

)
dγE

︸ ︷︷ ︸
I13

]
. (D.26)
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With the help of [168, Eq. (3.352.4)]

∫ ∞

0

exp(−µx)

x+ β
dx = exp (µβ) E1 (µβ) . (D.27)

the integral I10 in (D.26) can be solved straightforwardly. Then, by using (D.2) to expand the lower

incomplete gamma function in I11, this yields

I11 =kE!

∫ ∞

0

exp
(

− γE

γB

)

(1 + γE)
dγE

︸ ︷︷ ︸
I14

− kE!

kE∑

w=0

1

w!

(
1

γE

)w ∫ ∞

0

γw
E exp

(
−γE

(
1

γB
+ 1

γE

))

(1 + γE)
dγE

︸ ︷︷ ︸
I15

. (D.28)

Here, it is used (D.27), and [168, Eq. (3.353.5)], so

∫ ∞

0

xk exp (−µx)

1 + x
dx = exp (µ) Γ (1 + k) Γ (−k, µ) (D.29)

to solve I14, and I15, respectively. Again, by expanding the lower incomplete gamma function in I12

with the use of (D.2), this yields

I12 =kB!

∫ ∞

0

exp
(

− γE

γE

)

(1 + γE)
dγE

︸ ︷︷ ︸
I16

− kB!

kB∑

d=0

1

d!

(
1

γB

)d ∫ ∞

0

γd
E exp

(
−γE

(
1

γB
+ 1

γE

))

(1 + γE)
dγE

︸ ︷︷ ︸
I17

. (D.30)

By using (D.27), and (D.29), both I16, and I17 can be evaluated in closed-form fashion, respectively.

Now, to find a closed-form solution of I13 in (D.26), a series expansion of Υ(·, ·) [176, Eq. (8.5.1)] is

employed, so

Υ (a, z) = a−1za
1F1 (1, 1 + a, z) . (D.31)

For convenience, 1F1 (·, ·, ·) in (D.31) is expressed as [176, Eq. (13.2.2)]

1F1 (a, b, z) =

∞∑

s=0

(a)s

(b)s s!
zs. (D.32)

Next, by substituting (D.31) and (D.32) into (D.26), I13 can be rewritten as

I13 =
(kE + 1)

−1

(kB + 1)

(
1

γB

)kB+1(
1

γE

)kE+1 ∞∑

g=0

(1)g

g! (kB + 2)g

(
1

γB

)g ∞∑

c=0

(1)c

c! (kE + 2)c

×
(

1

γE

)c ∫ ∞

0

γkB+kE+g+c+2
E

1 + γE
exp

(
−γE

(
1

γB

+
1

γE

))
dγE

︸ ︷︷ ︸
I18

. (D.33)

Similar to the evaluation of I17, (D.29) is used to calculate I18. Finally, by combining (D.22) and (D.26)

with the respective substitutions, the ASC can be formulated as in (4.9), which concludes the proof.

xx



D.4 PROOF OF PROPOSITION 9

From [20, Eq. (26)], the n-th moment of the NWDP model is given by

E
[
γg

B

]
= γg

BΓ (1 + g)

∞∑

zB=0

CzB 2F1

(
−CzB

, g + 1; 1; 1
)
, (D.34)

where for convenience in our analysis, the series representation of 2F1 (·, ·; ·; ·) [149, Eq. (15.1.1)] is

used, so

2F1 (a, b; c; z) =
∞∑

s=0

(a)s

(b)s s!
zs. (D.35)

Next, by plugging (D.34) into (2.15), the normalized moments of the RV γB is expressed by

M(µ) = Γ (1 + µ)

∞∑

zB=0

CzB

∞∑

b=0

(−zB)b (µ+ 1)b

b! (1)b

. (D.36)

Here, taking the derivative of (D.36) with respect to g, and setting g equal to zero, it follows that

dM(g)

dg

∣∣∣∣
g=0

=

∞∑

zB=0

CzB

∞∑

b=0

(−zB)b

b!
ψ (1 + b) (D.37)

Then, by replacing (D.37) into (2.13), C
γB→∞
B can be formulated in a simple form as

C
γB→∞
B = log2(γB) + log2(e)

∞∑

zB=0

CzB

∞∑

b=0

(−zB)b

b!
ψ (1 + b) . (D.38)

Now, by substituting (D.21) for i = E into (2.10), it gets to

CE =
1

ln 2γE




∫ ∞

0

ln(1 + γE) exp

(
−γE

γE

)
dγE

︸ ︷︷ ︸
I19

+

∞∑

zE=1

CzE

∫ ∞

0

ln(1 + γE) exp

(
−γE

γE

)
LzE

(
γE

γE

)
dγE.

︸ ︷︷ ︸
I20




(D.39)

Next using (D.23a) and (D.23b) to solve I19 and I20, CE can be obtained in a simple way. Finally, by

plugging (D.38) and (D.39) into (2.12), the asymptotic ASC is attained as in (4.10). This completes

the proof.
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E DERIVATION OF THE SECRECY METRICS FOR THE κ-

µ SHADOWED FADING MODEL

E.1 PROOF OF PROPOSITION 10

Since the MRC receiver scheme is employed in the system configuration, the instantaneous SNR at

Bob can be expressed as

γB =

NB∑

l=1

γk∗,l. (E.1)

Now, using (5.7), the CDF of γB can be formulated as

FγB
(γB) =

(
Fγ1

(γB)

)NA

, (E.2)

where

γ1 =

NB∑

l=1

γk,l, (E.3)

with γk,l denoting the instantaneous received SNR of the link between a single transmitting k-th

antenna at Alice and the l-th receive antenna at Bob. In dealing with i.i.d. channels, the CDF of γ1

can be obtained by following the same methodology used for (5.11), and (5.12), i.e.,

NB∑

l=1

γk,l (γB, κB, µB,mB) = γ1 (NBγB, κB, NBµB, NBmB) . (E.4)

Based on (E.4), by substituting γ, µ, m, and κ by NBγB, NBµB, NBmB, and κB, respectively into

(5.1b) and (5.2b), so the resulting CDFs of γ1 are given by

❐ If mB < µB

Fγ1
(γB) =1 −

ηB∑

j=1

AB
1,j exp

(
− γB

∆B
1

)
ηB−j∑

r=0

1

r!

(
γB

∆B
1

)r

−
νB∑

j=1

AB
2,j exp

(
− γB

∆B
2

)
νB−j∑

r=0

1

r!

(
γB

∆B
2

)r

, (E.5)
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where ηB = NB(µB −mB), and νB = NBmB.

❐ If mB ≥ µB

Fγ1
(γB) =1 −

βB∑

j=0

BB
j exp

(
− γB

∆B
2

)
νB−j−1∑

r=0

1

r!

(
γB

∆B
2

)r

, (E.6)

where βB = NB(mB − µB). However, the resulting CDFs in (E.5) and (E.6) become intractable in

developing (E.2), if not impossible. Therefore, such CDFs of γ1 are reformulated from its original

forms to equivalent expressions by changing the indices of the sums and rearranging some of the

terms, so, this yields

❐ If mB < µB

Fγ1
(γB) =1 −

ηB∑

j=1

(
γB

∆B
1

)ηB−j exp

(
− γB

∆B
1

)

(ηB−j)!

ηB∑

z=ηB+1−j

AB
1,ηB+1−z −

νB∑

j=1

(
γB

∆B
2

)νB−j exp

(
− γB

∆B
2

)

(νB−j)!

ν∑

z=ν+1−j

AB
2,νB+1−z,

(E.7)

where ηB = NB(µB −mB), and νB = NBmB.

❐ If mB ≥ µB

Fγ1
(γB) =1 −

νB−1∑

j=0

(
γB

∆B
2

)νB−1−j exp

(
− γB

∆B
2

)

(νB−1−j)!

βB∑

z=βB+1−T (j)

BB
βB−z, (E.8)

where βB = NB(mB − µB), the coefficients marked with superscripts B (e.g., ∆B
1 ) are associated to

the fading parameters at Bob, and

T (j) =





j + 1, for 0 ≤ j ≤ βB

βB + 1, otherwise.

It is worth mentioning that the CDFs in (E.5) for mB < µB and (E.6) for mB ≥ µB are equivalent to

(E.7) and (E.8), respectively. However, unlike (E.5) and (E.6), the CDFs given in (E.7) and (E.8) are

mathematically tractable to perform the multinomial expansion in (E.2). In what follows, with the help

of (E.7) and (E.8), the CDF of γB given in (E.2) is derived for mB < µB and mB ≥ µB.
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❐ If mB < µB

Substituting (E.7) into (E.2), we get

FγB
(γB) =

(
1 −

(
ηB∑

j=1

(
γB

∆B
1

)ηB−j exp

(
− γB

∆B
1

)

(ηB−j)!

ηB∑

z=ηB+1−j

AB
1,ηB+1−z

−
νB∑

j=1

(
γB

∆B
2

)νB−j exp

(
− γB

∆B
2

)

(νB−j)!

ν∑

z=ν+1−j

AB
2,νB+1−z

))NA

. (E.9)

Next, by applying the binomial expansion (D.5) twice in (E.9), this yields

FγB
(γB) =

NA∑

k=0

(−1)k

(
NA

k

) k∑

c=0

(
k

c

)( ηB∑

j=1

(
γB

∆B
1

)ηB−j exp

(
− γB

∆B
1

)

(ηB−j)!

ηB∑

z=ηB+1−j

AB
1,ηB+1−z

)k−c

︸ ︷︷ ︸
T1

×
(

νB∑

j=1

(
γB

∆B
2

)νB−j exp

(
− γB

∆B
2

)

(νB−j)!

ν∑

z=νB+1−j

AB
2,νB+1−z

)c

︸ ︷︷ ︸
T2

. (E.10)

Next, by using the multinomial theorem [149, Eq. (24.1.2)]

(x1 + x2 + · · · + xm)
n

=
∑

k1+k2+···+km

n!

k1!k2! · · · km!

∏

1≤t≤m

xkt

t (E.11)

for both terms T1 and T2, it follows that

T1 =
∑

ρ(c,νB)

c!

p1! · · · pνB
!




νB∏

q=1




(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z




pq




× exp

(
−γB

(
k−c
∆B

1

))
γ

∑
νB

q=1
(νB−q)pq

B (E.12)

T2 =
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!




ηB∏

t=1




(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z




st




× exp

(
−γB

(
c

∆B
2

))
γ

∑
ηB

t=1
(ηB−t)st

B , (E.13)

where ηB = NB(µB−mB), νB = NBmB and based on (E.11), it follows that ρ (k − c, ηB) =
{(
s1, s2, · · · , sηB

)}
,

for st ∈ N,
∑ηB

t=1 st = k − c, and similarly ρ (c, νB) =
{(
p1, p2, · · · , pνB

)
: pq ∈ N,

∑νB

q=1 pq = c
}

. Then,

by substituting (E.12) and (E.13) into (E.10), the CDF of γB can be formulated as in (5.13), which

concludes the proof.
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❐ If mB ≥ µB

Replacing (E.8) into (E.2), it follows that

Fγ1
(γB) =


1 −

νB−1∑

j=0

(
γB

∆B
2

)νB−1−j exp

(
− γB

∆B
2

)

(νB−1−j)!

βB∑

z=βB+1−T (j)

BB
βB−z




NA

. (E.14)

Again, by applying the binomial expansion in (D.5), this leads to

FγB
(γB) =

NA∑

k=0

(−1)k

(
NA

k

)( νB∑

j=1

(
γB

∆B
2

)νB−j exp

(
− γB

∆B
2

)

(νB−j)!

βB∑

z=βB+1−T (j−1)

BB
βB−z

)k

︸ ︷︷ ︸
T3

. (E.15)

Here, by invoking the multinomial expansion given in (E.11) into (E.15), T3 can be expressed as

T3 =
∑

ρ(k,νB)

k!

s1! · · · sνB
!




νB∏

t=1




(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st


 exp

(
−γB

(
k

∆B
2

))
γ

∑
νB

t=1
(νB−t)st

B .

(E.16)

where ρ (k, νB) =
{(
s1, s2, · · · , sνB

)
: st ∈ N,

∑νB

t=1 st = k
}

and βB = NB(mB − µB). Finally, by sub-

stituting (E.16) into (E.15), the CDF of γB can be expressed as in (5.14). This completes the proof.
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E.2 PROOF OF PROPOSITION 12

❐ If mi < µi for i ∈ {B,E}

Substituting (5.11a) and (5.13) into (2.5), this gets to

SOP =

NA∑

k=0

(−1)k

(
NA

k

) k∑

c=0

(
k

c

) ∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!




ηB∏

t=1




(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z




st




×
∑

ρ(c,νB)

c!

p1! · · · pνB
!




νB∏

q=1




(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z




pq


 exp

(
− (τ−1)(k−c)

∆B
1

)

× exp
(

− (τ−1)c

∆B
2

)[ ηE∑

j=1

AE
1,j

(ηE−j)!

(
ηE−j+1

ωE
A1

)ηE−j+1 ∫ ∞

0

(τγE + τ − 1)

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

︸ ︷︷ ︸
T4

× γηE−j
E exp

(
−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ ηE−j+1
ωE

A1

))
dγE

︸ ︷︷ ︸
T4

+

νE∑

j=1

AE
2,j

(νE−j)!

(
νE−j+1

ωE
A2

)νE−j+1 ∫ ∞

0

γνE−j
E

︸ ︷︷ ︸
T5

× (τγE + τ − 1)

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq exp

(
−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ νE−j+1
ωE

A1

))
dγE

︸ ︷︷ ︸
T5

]
.

(E.17)

Next, with the aid of (D.5), T4 and T5 can be rewritten by

T4 =

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq∑

b=0

(∑ηB

t=1(ηB − t)st +
∑νB

q=1(νB − q)pq

b

)
(τ − 1)

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq−b

× τ b

∫ ∞

0

γηE−j+b
E exp

(
−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ ηE−j+1
ωE

A1

))
dγE

︸ ︷︷ ︸
I1

. (E.18)

T5 =

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq∑

b=0

(∑ηB

t=1(ηB − t)st +
∑νB

q=1(νB − q)pq

b

)
(τ − 1)

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq−b

× τ b

∫ ∞

0

γνE−j+b
E exp

(
−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ νE−j+1
ωE

A1

))
dγE

︸ ︷︷ ︸
I2

. (E.19)

Then, by using (D.19), I1 and I2 can be solved as

I1 =

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ ηE−j+1
ωE

A1

)−1−(ηE−j+b)

Γ (1 + ηE − j + b) . (E.20)
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I2 =

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ νE−j+1
ωE

A1

)−1−(νE−j+b)

Γ (1 + νE − j + b) . (E.21)

Then, by combining (E.17) to (E.21), the SOP can be expressed as in (5.17), which concludes the

proof.

❐ If mi ≥ µi for i ∈ {B,E}

Substituting (5.12a) and (5.14) into (2.5), this gets to

SOP =

NA∑

k=0

(−1)k

(
NA

k

)
exp

(
−k (τ−1)

∆B
2

) ∑

ρ(k,νB)

k!

s1! · · · sνB
!




νB∏

t=1




(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st




×
βE∑

j=0

BE
j

νE−j−1

(
νE−j

ωE
B

)νE−j ∫ ∞

0

γνE−j−1
E exp

(
−γE

(
kτ
∆B

2

+ νE−j
ωE

B

))
(τγE + τ − 1)

∑
νB

t=1
(νB−t)st dγE

︸ ︷︷ ︸
T6

.

(E.22)

Again, by using the binomial expansion (D.5), T6 can be rewritten as

T6 =

∑
νB

t=1
(νB−t)st∑

b=0

(∑νB

t=1(νB − t)st

b

)
τ b (τ − 1)

∑
νB

t=1
(νB−t)st

∫ ∞

0

γνE−j−1+b
E exp

(
−γE

(
kτ
∆B

2

+ νE−j
ωE

B

))
dγE

︸ ︷︷ ︸
I3

.

(E.23)

Then, by using (D.19), I3 can be solved as

I3 =

(
kτ
∆B

2

+ νE−j
ωE

B

)−1−(νE−j−1+b)

Γ (1 + νE − j − 1 + b) . (E.24)

Finally, by combining (E.22) to (E.24), the SOP can be formulated as in (5.18). This concludes the

proof.

E.3 PROOF OF PROPOSITION 13

Keeping γE Fixed and γB → ∞ Firstly, by using the asymptotic-matching method proposed in

Section 3.1.3, the CDF of a κ-µ shadowed RV given in (5.1b) and (5.2b) can be approximated by a

gamma distribution with CDF

FG
X (x) ≈ Υ(α, x

λ )

Γ (α)
, (E.25)
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where the shape parameters α and λ are given in terms of the κ-µ shadowed fading parameters as

α =µ, (E.26a)

λ =
γ

(1 + κ)µ

(
(m+ κµ)

m

mm

) 1
µ

. (E.26b)

Now, in order to asymptotically approximate (E.25), the following relationship Υ (a, x) ≃ xa/a as

x → 0 is used, thus

FG
X (x) ≃ 1

αΓ (α)

(
x

λ

)α

. (E.27)

Then, by using (E.27), any CDF in (5.1b) and (5.2b) can be expressed asymptotically by

Fγ(γ) =
γµ

µΓ (µ)

(
µ (1 + κ)

γ

)µ
mm

(m+ κµ)
m . (E.28)

Next, substituting (E.28) into (E.4) with γ → NBγB, µ → NBµB, m → NBmB, and κ → κB [21,

Proposition 1], the CDFs given in (E.5) and (E.6) can asymptotically approximate by

F1(γB) ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B γNBµB

B

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)
. (E.29)

Plugging (E.29) into (E.2), this yields

FB(γB) ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B γNBµB

B

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

. (E.30)

Inserting (E.30) together with the PDF of the Eavesdropper given in [21, Eq. (4)] by [1]

fγE
(γE) =

(µENE)NEµE(NEmE)NEmE(1 + κE)NEµE

Γ (NEµE)NEγE (NEµEκE +NEmE)
mE

exp

(
−µE (1 + κE) γE

γE

)(
γE

NEγE

)NEµE−1

× 1F1

(
NEmE, NEµE,

µ2
EκE (1 + κE) γE

γE (µEκE +mE)

)
(E.31)

[1] Since the eavesdropper uses MRC receiver, by substituting γ → NEγ
E

, µ → NEµE, m → NEmE, and
κ → κE into [21, Eq. (4)].
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into (2.6), it follows that

SOP∞ ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B τNBµB

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

µNEµE

E mNEmE

E (1 + κE)
NEµE

Γ (NEµE) γNEµE

E (µEκE +mE)
NEmE

×
∫ ∞

0

γNEµE+NANBµB−1
E exp

(
−γEµE (1 + κE)

γE

)
1F1

(
NEmE, NEµE,

γEκEµ
2
E (1 + κE)

γE (mE + κEµE)

)
dγE

︸ ︷︷ ︸
I4

.

(E.32)

Finally, using [168, Eq. (7.522.9)]

∫ ∞

0

xρ−1 exp (−βx) 1F1 (a, b, cx) dx = β−ρΓ (ρ) 2F1

(
a, ρ, b,

c

β

)
(E.33)

the integral I4 in (E.32) is solved in closed-form as

I4 =

(
µE (1 + κE)

γE

)−NANBµB

Γ (NANBµB +NEµE) 2F1

(
NEmE, NANBµB +NEµE, NEµE,

κEµE

mE + κEµE

)
.

(E.34)

Finally, by substituting (E.34) into (E.32), the SOP∞ for TAS/MRC configuration can be formulated as

in (5.19). This completes the proof.

E.4 PROOFS OF PROPOSITION 14

❐ If mi < µi for i ∈ {B,E}

Inserting (5.13) in (2.9), the result is

CB =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

) ∑

ρ(c,νB)

c!

p1! · · · pνB
!




νB∏

q=1




(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z




pq




×
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!




ηB∏

t=1




(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z




st




∫ ∞

0

exp
(

− γEc
∆B

2

)

(1 + γE)︸ ︷︷ ︸
I5

× exp


−γE

(
k − c

∆B
1

)
 γ

∑
ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

E dγE

︸ ︷︷ ︸
I5

. (E.35)
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Here, by using (D.29), the integral in I5 can be solved in closed-form fashion as

I5 = exp

(
k − c

∆B
1

+
c

∆B
2

)
Γ


1 +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq




× Γ


−

ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
∆B

2 (k − c) + ∆B
1 c

∆B
1 ∆B

2


 . (E.36)

Then, by substituting (5.13) together with (5.11b) into (2.11), it follows that

L (γB, γE) =

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

) ∑

ρ(c,νB)

c!

p1! · · · pνB
!




νB∏

q=1




(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z




pq




× 1

ln 2

∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!




ηB∏

t=1




(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z




st




(
ηE∑

j=1

AE
1,j

ηE−j∑

r=0

1

r!

×
(

1

∆E
1

)r ∫ ∞

0

exp

(
−γE

(
k−c
∆B

1

+ c
∆B

2

+ 1
∆E

1

)) 1

(1 + γE)
γ

r+
∑

ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

E dγE

︸ ︷︷ ︸
I6

+

νE∑

j=1

AE
2,j

νE−j∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(
− γE

∆E
2

)
exp


−γE

(
k − c

∆B
1

+
c

∆B
2

)
 1

(1 + γE)

︸ ︷︷ ︸
I7

× γ
r+
∑

ηB

t=1
(ηB−t)st+

∑
νB

q=1
(νB−q)pq

E dγE︸ ︷︷ ︸
I7

.

)
(E.37)

Again, by using (D.29), both I6 and I7 can be evaluated in closed-form fashion as

I6 = exp

(
k − c

∆B
1

+
c

∆B
2

+
1

∆E
1

)
Γ


−r −

ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
k − c

∆B
1

+
c

∆B
2

+
1

∆E
1




× Γ


1 + r +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq


 (E.38)

I7 = exp

(
k − c

∆B
1

+
c

∆B
2

+
1

∆E
2

)
Γ


−r −

ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
k − c

∆B
1

+
c

∆B
2

+
1

∆E
2




× Γ


1 + r +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq


 . (E.39)

Finally, by substituting (E.35) and (E.37) into (2.8), the CS can be expressed as in (5.21). This

completes the proof.

xxx



❐ If mi ≥ µi for i ∈ {B,E}

Plugging (5.14) in (2.9), it follows that

CB =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) ∑

ρ(k,νB)

k!

s1! · · · sνB
!




νB∏

t=1




(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st




×
∫ ∞

0

1

(1 + γE)
exp

(
−γE

(
k

∆B
2

))
γ

∑
νB

t=1
(νB−t)st

E dγE

︸ ︷︷ ︸
I8

. (E.40)

With the aid of (D.29), I8 can be evaluated in exact closed-form as

I8 = exp

(
k

∆B
2

)
Γ


1 +

νB∑

t=1

(νB − t)st


Γ


−

νB∑

t=1

(νB − t)st,
k

∆B
2


 . (E.41)

Next, inserting (5.12b) and (5.14) into (2.11) yields

L (γB, γE) =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) ∑

ρ(k,νB)

k!

s1! · · · sνB
!




νB∏

t=1




(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st




×
βE∑

j=0

BE
j

νE−j−1∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(
− γE

∆E
2

)
1

(1 + γE)
exp

(
−γEk

∆B
2

)
γ

∑
νB

t=1
(νB−t)st+r

E dγE

︸ ︷︷ ︸
I9

.

(E.42)

Similar to the evaluation of I8, the identity (D.29) is used to calculate I9, thus

I9 = exp

(
k

∆B
2

+
1

∆E
2

)
Γ


1 + r +

νB∑

t=1

(νB − t)st


Γ


−r −

νB∑

t=1

(νB − t)st,
k

∆B
2

+
1

∆E
2


 . (E.43)

Finally, by substituting (E.40) and (E.42) into (2.8), the CS can be formulated as in (5.20), which

concludes the proof.

E.5 PROOFS OF PROPOSITION 15

❐ If mi < µi for i ∈ {B,E}

Here, the aim is to express C
∞
S in the form of (2.12). For this purpose, CE and C

γB→∞
B are derived
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below. Inserting (5.11b) in (2.9), this yields

CE =
1

ln 2

(
ηE∑

j=1

AE
1,j

ηE−j∑

r=0

1

r!

(
1

∆E
1

)r ∫ ∞

0

exp

(
− γE

∆E
1

)
γr

E

(1 + γE)
dγE

︸ ︷︷ ︸
I10

+

νE∑

j=1

AE
2,j

νE−j∑

r=0

1

r!

(
1

∆E
2

)r

×
∫ ∞

0

exp

(
− γE

∆E
2

)
γr

E

(1 + γE)
dγE

︸ ︷︷ ︸
I11

)
. (E.44)

Recalling (D.29), both I10 and I11 are given by

I10 = exp

(
1

∆E
1

)
Γ

(
−r, 1

∆E
1

)
Γ (1 + r) , (E.45a)

I11 = exp

(
1

∆E
2

)
Γ

(
−r, 1

∆E
2

)
Γ (1 + r) . (E.45b)

Now, to express C
γB→∞
B as (2.13), it is defined the g-th moment of a RV X as [6, Eq. (4.39)]

E [xg] =

∫ ∞

0

xgfX(x)dx, (E.46)

where fX(x) is the PDF of the RV X. Using (5.15) into (E.46), the g-th moment of the RV γB is given

by

E
[
γg

B

]
=

NA∑

k=1

(−1)k

(
NA

k

) k∑

c=0

(
k

c

) ∑

ρ(c,νB)

c!

p1! · · · pνB
!




νB∏

q=1




(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z




pq




︸ ︷︷ ︸
C1

×
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!




ηB∏

t=1




(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z




st




︸ ︷︷ ︸
C1

∫ ∞

0

exp

(
−γB

(
k−c
∆B

1

))

︸ ︷︷ ︸
I12

× exp
(

− γBc
∆B

2

)
γ

−1+g+

T7︷ ︸︸ ︷
ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

B







T7︷ ︸︸ ︷
ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq




︸ ︷︷ ︸
I12

−γBc

∆B
2

+
γB (c− k)

∆B
1

dγB

)
.

︸ ︷︷ ︸
I12

(E.47)

Next, it is considered the following two cases to solve I12 in (E.47).
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❐ When T7 = 0

In this case, with the help of (D.19) and (5.6) with γ → NBγB, µ → NBµB, m → NBmB, and κ → κB,

I12 can be expressed as

I12 = − γg
B

(
c+ kC2C3 − cC2C3

C3

)−g

Γ (1 + g) . (E.48)

where C2 = NBµB(1 +κB) and C3 = µBκB+mB

NBmBµB(1+κB) . Then, by substituting (E.48) into (E.47), and the

resulting expression in (2.15), it follows that

M(g) = − C1

(
c+ kC2C3 − cC2C3

C3

)−g

Γ (1 + g) . (E.49)

Taking the derivative of (E.49), this gets to

dM(g)

dg
=C1

(
kC2 + c

(
−C2 +

1

C3

))−g

Γ (1 + g)


C + ln

(
kC2 + c

(
−C2 +

1

C3

))
 . (E.50)

Substituting (E.50) into (2.14), it follows that

t = − log2(e)C1


C + ln

(
kC2 + c

(
−C2 +

1

C3

))
 . (E.51)

Finally, by inserting (E.51) into (2.13), this yields

C
γB→∞
B ≈ log2(NBγB) + log2(e)C1


C + ln

(
kC2 + c

(
−C2 +

1

C3

))
 . (E.52)

❐ When T7 6= 0

Here, again with the help of (D.19) and (5.6) with γ → NBγB, µ → NBµB, m → NBmB, and κ → κB,

I12 can be expressed as

I12 = − γg
Bg

(
c+ kC2C3 − cC2C3

C3

)−g−T7

Γ (g + T7) . (E.53)

Next, by plugging (E.53) into (E.47), and the resulting expression in (2.15), this yields
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M(g) = − C1g

(
c+ kC2C3 − cC2C3

C3

)−g−T7

Γ (g + T7) . (E.54)

Taking the derivative of (E.54), this leads to

dM(g)

dg
= − C1

(
c− cC2C3 + C2C3k

C3

)−g−T7
(

Γ (g + T7) − gΓ (g + T7) ln

(
c− cC2C3 + C2C3k

C3

)

+ gΓ(g + T7)ψ (g + T7)

)
. (E.55)

Inserting (E.55) into (2.14), this yields

t = − log2(e)C1

(
−
(
c− cC2C3 + C2C3k

C3

)−T7

Γ (T7)

)
. (E.56)

Next, by inserting (E.56) into (2.13), this yields

C
γB→∞
B ≈ log2(NBγB) + log2(e)C1

(
−
(
c− cC2C3 + C2C3k

C3

)−T7

Γ (T7)

)
. (E.57)

Replacing (E.44) together with (E.52) and (E.57) into (2.12), C
∞
S is attained as in (5.22). This com-

pletes the proof.

❐ If mi ≥ µi for i ∈ {B,E}

Again, the goal is to express C
∞
S in the form of (2.12). To this end, CE and C

γB→∞
B are derived below.

Firstly, substituting (5.12b) into (2.9), it follows that

CE =
1

ln 2

βE∑

j=0

BE
j

νE−j−1∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(
− γE

∆E
2

)
γr

E

(1 + γE)
dγE

︸ ︷︷ ︸
I13

. (E.58)

Again, making use of (D.29), I13 is computed in a closed-form as

I13 = exp

(
1

∆E
2

)
Γ(1 + r)Γ

(
−r, 1

∆E
2

)
. (E.59)
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Here, a similar steps to obtain C
γB→∞
B as in the previous case is performed. Therefore, using (5.16)

into (E.46), the g-th moment of the RV γB is given by

E
[
γg

B

]
=

NA∑

k=1

(−1)k

(
NA

k

) ∑

ρ(k,νB)

k!

s1! · · · sνB
!




νB∏

t=1




(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z




st




︸ ︷︷ ︸
C4

×
∫ ∞

0

exp

(
−kγB

∆B
2

)
γ

−1+g+

T8︷ ︸︸ ︷
νB∑

t=1

(νB − t)st

B




T8︷ ︸︸ ︷
νB∑

t=1

(νB − t)st − kγB

∆B
2



dγB

︸ ︷︷ ︸
I14

. (E.60)

Next, it is considered the following two cases to solve I14 in (E.60).

❐ When T8 = 0

In this case, with the help of (D.19) and (5.6) with γ → NBγB, µ → NBµB, m → NBmB, and κ → κB,

I14 can be expressed as

I14 = − γg
B

(
k

C3

)−g

Γ (1 + g) . (E.61)

Next, by substituting (E.61) into (E.60), and the resulting expression in (2.15), it follows that

M(g) = − C4

(
k

C3

)−g

Γ (1 + g) . (E.62)

Taking the derivative of (E.62), this yields

dM(g)

dg
=C4

(
k

C3

)−g

Γ (1 + g)

(
ln

(
k

C3

)
− ψ (1 + g)

)
. (E.63)

Inserting (E.63) into (2.14), it follows that

t = − log2(e)C4

(
C + ln

(
k

C3

))
. (E.64)

Substituting (E.64) into (2.13), this yields

C
γB→∞
B ≈ log2(NBγB) + log2(e)C4

(
C + ln

(
k

C3

))
. (E.65)
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❐ When T8 6= 0

Here, again with the help of (D.19) and (5.6) with γ → NBγB, µ → NBµB, m → NBmB, and κ → κB,

I12 can be expressed as

I14 = − γg
Bg

(
k

C3

)−g−T8

Γ (g + T8) . (E.66)

Then, by plugging (E.66) into (E.60), and the resulting expression in (2.15), this gets to

M(g) = − gC4

(
k

C3

)−g−T8

Γ (g + T8) . (E.67)

Taking the derivative of (E.67), this yields

dM(g)

dg
= − C4

(
k

C3

)−g−T8

Γ (g + T8)

(
1 − g ln

(
k

C3

)
+ gψ(g + T8)

)
. (E.68)

Inserting (E.68) into (2.14), it follows that

t = − log2(e)C4

(
k

C3

)−g−T8

Γ (g + T8) . (E.69)

Next, substituting (E.69) into (2.13), this gets to

C
γB→∞
B ≈ log2(NBγB) + log2(e)C4

(
k

C3

)−g−T8

Γ (g + T8) . (E.70)

Finally, by replacing (E.58) together with (E.65) and (E.70) into (2.12), C
∞
S is formulated as in (5.23).

This completes the proof.
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F PROOF OF THEOREM 1

Knowing that if X is a random variable with expectation E [X] and and Y is another random variable

distributed on the same probability space of of X, then [177]

E{X} = E{E
{
X|Y

}
}. (F.1)

Next, from (6.2), it is defined the set Z =
{
Hi,1,Hi,b,Θi

}
. Now, using the law of total expectation in

(F.2) on the set Z, the total expectation of (6.2) and (6.5) can be reformulated as

E{HbHe} = E{E
{
HbHe|Z

}
}. (F.2)

Here, note that Hb is constant when conditioned to Z, so that it can be taken off the inner expectation

operation as

E{HbHe} = E{HbE
{
He|Z

}
}. (F.3)

Then, by expanding the inner expectation in (F.3) with respect to (6.5), and noting that Hi,1 are

constant when conditioned to Z, it follow that

E
{
He|Z

}
=

1

n

n∑

i=1

|Hi,1|E
{

|Hi,e|ejΨi

}
. (F.4)

Here, based on the results given in [161], the distribution of Ψi is uniform in any interval of length 2π

provided that ∠Hi,e is uniformly distributed in the same interval. Now, under the mild assumption that

|Hi,e| and ejΨi are independent, which is the case for instance of |Hi,e| being Rayleigh distributed, it

follows that

E
{
He|Z

}
= 0. (F.5)

Therefore, the independence between Hb and He is stated.
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G DERIVATION OF THE SOP AND THE ASYMPTOTIC SOP

EXPRESSIONS

The derivation of the SOP and the Asymptotic SOP analytical expressions for the FN/Rayleigh (FR),

Nakagami/Rayleigh (NR) and Beckmann/Rayleigh (BR) scenarios are provided here.

G.1 PROOF OF LEMMA 1

G.1.1 SOPFR

From [164, Corollary 5], an alternative formulation of the SOP for the FN/Rayleigh case is given by

SOPFR = Fγb
(τ − 1) + exp

(
τ−1
τγe

)
Mu

γb

(
− 1

τγe
, τ − 1

)
, (G.1)

where τ = 2RS , and Fγb
(·) is the κ-µ CDF distribution with with κ = K and µκ−µ = 1/2 given by [163,

Eq. (3)]

Fγb
(γ) = 1 −Q0.5


√

K,

√
(1 +K)γ

γb


 . (G.2)

and

Mu
γb

(
−1/τ, τ − 1

)
= Mγb

(
−1/τ

)
− Ml

γb

(
−1/τ, τ − 1

)
, (G.3)

Mγb
(·), Mu

γb
(·, ·), and Ml

γb
(·, ·) are the conventional moment generating function (MGF), the upper-

incomplete MGF, and the lower-incomplete (IMGF) of the RV γb, which follows a squared κ-µ distri-

bution, respectively [164, Eq. (3)]. From [164, Table I], it follows that

Ml
γb

(s, z)
(1/2)1/2(1 +K)1/2

(
1/2(1 +K) − γbs

)1/2
exp

(
1/2Kγbs

1/2(1 +K) − γbs

)

×


1 −Q1/2



√

1/2K(1 +K)

1/2K(1 +K) − γbs
,

√
2

(
1 +K

2γbs
− s

)
z





 (G.4)
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Mγb
(s) =

(1/2)1/2(1 +K)1/2

1/2(1 +K) − γbs
exp

(
Kγbs

(1 +K) − γbs

)
. (G.5)

Then, by combining (G.1) to (G.5), the SOPFR can be expressed as in (6.18). This completes the

proof.

G.1.2 SOP∞
FR (γb → ∞)

By using the asymptotic approach given in [178], the CDF of a κ-µ RV can be asymptotically approx-

imate as

Fγb
(γb) ≃ exp (−Kµ) γµ

bK
1−µ

2 (1 +K)
1+µ

2 γ
−1−µ

2

b

Γ(µ)

(
µ
√

K(1+K)
γb

)1−µ , (G.6)

Then, by substituting (G.6) together with the Exponential PDF given in (6.16) into (2.5), this yields

SOP∞
FR ≃ exp (−Kµ)K

1−µ
2 (1 +K)

1+µ
2 γ

−1−µ
2

b

Γ(µ)

(
µ
√

K(1+K)
γb

)1−µ

∫ ∞

0

(γeτ + τ − 1)µ exp

(
γe

γe

)
dγe

︸ ︷︷ ︸
I1

. (G.7)

Finally, by solving the integral I1 with the aid of the mathematical software package Wolfram Mathe-

matica, and then setting κ = K and µ = 1/2, the SOP∞
FR can be formulated as (6.19). This concludes

the proof.

G.2 PROOF OF LEMMA 2

G.2.1 SOPBR

Recalling [164, Corollary 5], the SOP given in (2.5) for the Beckmann/Rayleigh case can be reformu-

lated as

SOPBR = Fγb
(τ − 1) + exp

(
τ−1
τγe

)
Mu

γb

(
− 1

τγe
, τ − 1

)
, (G.8)

where Fγb
(·) is the squared Beckmann CDF [164, Eq. (7)] , which can be computed with the aid

of Matlab code developed in appendix I. Furthermore, the Mu
γb

(·, ·) [164, Eq. (3)] of the RV γb,

which follows a squared Beckmann distribution can be computed by using the Matlab code given

in appendix J. Such algorithm was implemented with the help of the inverse Laplace transformation

[165] as proposed in [164, Eq.4].
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G.2.2 SOP∞
BR (γb → ∞)

Substituting the MGF of the squared Beckmann distribution [120, Eq. (2.41)]

Mγb
(s) =

(1 + q2)(1 +K)√(
(1 + q2) (1 +K) − 2q2γbs

) (
(1 + q2) (1 +K) − 2γbs

)

× exp

(
(1 + q2)Kγbs

(1 + q2)(1 +K) − 2γbs

)
. (G.9)

into [122, Proposition 3] with d = 1[1], this yields

SOP∞
BR ≃ lim

s→∞
s(1 + q2)(1 +K) (γeτ + τ − 1)√(

(1 + q2) (1 +K) − 2q2γbs
) (

(1 + q2) (1 +K) − 2γbs
)

× exp

(
(1 + q2)Kγbs

(1 + q2) (1 +K) − 2q2γbs

)
. (G.10)

Finally, by performing the limit in (G.10) with the aid of Wolfram Mathematica, the SOPBR can be

expressed in closed-form fashion as in (6.21). This completes the proof.

G.3 PROOF OF LEMMA 3

G.3.1 SOPNR

Again, by making use of [164, Corollary 5], the SOP given in (2.5) for the Nakagami/Rayleigh case

can be reformulated as

SOPNR = Fγb
(τ − 1) + exp

(
τ−1
τγe

)
Mu

γb

(
− 1

τγe
, τ − 1

)
, (G.11)

where Fγb
(·) is the squared Nakagami-m CDF given as in [99, Eq. (3)] by

Fγb
(γ) =

Υ
(
m, mγ

γb

)

Γ(m)
. (G.12)

Next, from [164, Eq. (2)], the Mu
γb

(·, ·) in (G.11) is defined as

Mu
γb

(
− 1

τγe
, τ − 1

)
=

∫ ∞

τ−1

exp(− 1
τγe

γb)fγb
(γb)dγb

︸ ︷︷ ︸
T1

(G.13)

[1] Setting d = 1 is because in a single-input single-output communication system over the Beckmann fading
channel, diversity order equals unity.

xl



by substituting (6.14) into (G.13), T1 term is expressed as

T1 =
mm

Γ(m)γb
m

∫ ∞

τ−1

xm−1 exp

(
−x
(
m

γb

+
1

τγe

))
dx

︸ ︷︷ ︸
I2

. (G.14)

Employing [168, Eq. (3.351.2)], I2 can be expressed in simple exact closed-form. Finally, by combin-

ing (G.11)-(G.14), the SOPNR can be attained as in (6.22). This completes the proof.

G.3.2 SOP∞
NR (γb → ∞)

From [99, Eq. (21)], the SOP∞
α−µ for a MIMO system over α-µ fading channels, is given by

SOP∞
α−µ =

2
RSMAMB αB µB

2 Γ
(
MEµE +MAMBµB

αB

αE

)
µ

MA(MBµB−1)
B M

MA(MBµB−MBµBαB/2−1)
B

Γ(MEµE)Γ(MAMBµB)µ
MAMBµB

αB
αE

E M
MAMBµB

(
αB
αE

− αB
2

)
E

×
(
γe

γb

)MAMBµBαB/2

(G.15)

where Mi for i ∈ {A,B,E} are the number of antennas at the source, destination, and the eaves-

dropper. Also, µi, αi for i ∈ {A,B,E} denote the fading parameters of the α-µ fading channel. Now,

knowing that the Nakagami/Rayleigh case is a particular case of α-µ distribution, the system param-

eters are set MA = MB = ME = 1, µB = m, µE = 1, and αB = αE = 2. Therefore, the SOP∞
NR is

obtained as in (6.23). This completes the proof.
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H DERIVATION OF THE ASR AND THE ASYMPTOTIC ASR

EXPRESSIONS

Here, mathematical expressions of the ASR, and the Asymptotic ASR for the FN/Rayleigh (FR),

Nakagami/Rayleigh (NR) and Beckmann/Rayleigh (BR) scenarios are derived.

H.1 PROOF OF LEMMA 4

H.1.1 ASRS-FR

By replacing [149, Eq. (9.6.10)] into the κ-µ PDF given in (6.13), this gets to

fγb
(γ) =

µ(1 +K)
µ+1

2 γ
µ−1

2

K
µ−1

2 γ
µ+1

2

b exp(µK)
exp

(
− (1 +K)γµ

γb

) ∞∑

z=0

1

z!Γ (µ+ z)


µ
√
K (K + 1)

γb




µ−1+2z

. (H.1)

Next, by replacing (H.1) into (2.10), the average secrecy capacity of the main link is given by

CB =
µ(1 +K)

µ+1
2

ln(2)K
µ−1

2 γ
µ+1

2

b exp(µK)

∞∑

z=0

1

z!Γ (µ+ z)

∫ ∞

0

γ
µ−1

2 ln(1 + γ) exp

(
− (1 +K)γµ

γb

)

×


µ
√
K (K + 1)

γb




µ−1+2z

dγ. (H.2)

Using the Meijer’s G-function Gm,n
p,q [·] representations of both exp(·) [154, id. (01.03.26.0004.01)] and

ln(·) [154, id. (01.04.26.0003.01)], this leads to

CB =
1

ln 2

µ(1 +K)(µ+1)/2

K(µ−1)/2γb
(µ+1)/2 exp (µK)

∞∑

z=0

1

z!Γ (µ+ z)


µ
√
K (K + 1)

γb




µ−1+2z

×
∫ ∞

0

γµ+z−1
b G1,2

2,2


γb

∣∣∣∣
1, 1

1, 0


G1,0

0,1


γbµ (1 +K)

γb

∣∣∣∣
−
0


 dγb

︸ ︷︷ ︸
I1

(H.3)
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Here, I1 can be solved with the help of [154, id. (07.34.21.0011.01)]. Next, by replacing [163, Eq. (28)]

into the κ-µ CDF given in (G.2), it follows that

Fγb
(γ) = 1 −

∞∑

l=0

(2Kµ)lΓ
(
µ+ l, (1+K)µγ

γb

)

l!Γ (µ+ l) 2l exp(Kµ)
. (H.4)

Now, from (6.16), the exponential CDF can be expressed as

Fγe
(γ) = 1 − exp

(
− γ

γe

)
, (H.5)

Substituting (H.4) and (H.5) into (2.11), it follows that

L (γb, γe) =
1

ln 2

∞∑

l=0

(µK)
l

l! exp (µK)

µ+l−1∑

z=0

1

z!

(
µ (1 +K)

γb

)z ∫ ∞

0

γe
z

1 + γe
exp

(
−γe

(
1

γe

+
µ (1 +K)

γb

))
dγe

︸ ︷︷ ︸
I2

(H.6)

With the aid of [168, Eq. (3.353.5)], I2 can be evaluated in exact fashion. Next, by substituting (H.3)

and (H.6) into the definition of the ASR, i.e., [99, Eq. (29)]

RS = CB − L (γb, γe) , (H.7)

and then setting µ = 1/2, the RS−FN can be formulated as in (6.24), which concludes the proof.

H.1.2 ASR∞
S-FR (γb → ∞)

An alternative formulations of the ASR and asymptotic ASR given in (2.8) and (2.12), respectively,

can be expressed as in [99] by

RS ≈ CB − CE + GZ (γb, γe) , (H.8)

R∞
S ≈ CB − CE, (H.9)

≈ log2 (γb) − t− CE, (H.10)

where t is given by (2.14), and

GZ (γb, γe) =
e1/γe

ln 2

∫ 1

0

1

u
e−1/(uγe)Mγb

( −1

uγe

)
du, (H.11)

in which Mγb
(·) is the conventional MGF of γb. From [179, Eq. (22)], the GZ (γb, γe) term for the

Folded Normal-Rayleigh case can be calculated directly as

GZ (γb, γe) = − log2(e)ψ(µ) + log2(µ) + log2(1 +K) −K log2(e)2F2 (1, 1; 2, µ+ 1; −µK) . (H.12)
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Now, by replacing the Exponential PDF given in (6.16) into (2.10), the average capacity of the eaves-

dropper link, CE, can be expressed as

CE =
1

γe ln 2

∫ ∞

0

ln (1 + γe) exp

(
−γe

γe

)
dγe

︸ ︷︷ ︸
I3

. (H.13)

Here, employing [168, Eq. (4.337.2)], the integral in I3 can be expressed in simple exact closed-form.

Then, by substituting (H.12) by setting µ = 1/2 together with (H.13) into (H.10), the R∞
S−FN can be

attained as in (6.25). This completes the proof.

H.2 PROOF OF LEMMA 5

H.2.1 ASRS-BR

An equivalent expression of (2.10) can be expressed as in [180, Eq. (7)] by

CB =
1

ln 2

∫ ∞

0

E1 (x)φγb
(x)dx. (H.14)

where φγb
(·) is the generalized MGF of the Beckmann given in [19, Eq. (6)] with r → ∞ and n = 1 as

φγb
(s) =

1
[(

(1+q2)

(1+K)−1 − 2sγb

) (
(1 +K) (1 + q2) − 2q2sγb

) ]5/2

[ (
1 + q2

)

(1 +K)
−1

× exp

(
− Kγb

(
1 + q2

)
x

(1 +K) (1 + q2) − 2q2sγb

)
γb

(
(1 +K)

(
1 + q2

)
− 2sγb

)

×



(
1 + q2

)3

(1 +K)
−3 − 2

(
1 + q2

)

(1 +K)
−1

(
K + (3 +K) q2 + q4

)
sγb − 8q4s2γ2

b


 . (H.15)

Now, by replacing (H.15) in (H.14), this leads to

CB =
1

ln 2

∫ ∞

0

E1 (x)
[(

(1+q2)

(1+K)−1 + 2xγb

) (
(1 +K) (1 + q2) + 2q2xγb

) ]5/2

[ (
1 + q2

)

(1 +K)
−1

︸ ︷︷ ︸
f ′

1(x)

×
∫ ∞

0

exp

(
− Kγb

(
1 + q2

)
x

(1 +K) (1 + q2) + 2q2xγb

)
γb

(
(1 +K)

(
1 + q2

)
+ 2xγb

)

︸ ︷︷ ︸
f ′

1(x)

×
∫ ∞

0



(
1 + q2

)3

(1 +K)
−3 +

2
(
1 + q2

)

(1 +K)
−1

(
K + (3 +K) q2 + q4

)
xγb + 8q4x2γ2

b




︸ ︷︷ ︸
f ′

1(x)

dx

]
. (H.16)
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Here, one can rewrite the integral in (H.16) as

I4 =

∫ ∞

0

exp (−x) f1 (x) dx, (H.17)

where f1 (x) = exp (x) f ′
1 (x). Now, according to the Gauss-Laguerre quadrature (QLQ) method [149,

Eq. (25.4.45)], I4 can be closely approximated by a weighted sum as

I4 ≈
h∑

i=1

wif1 (ki) , (H.18)

in which ki is the i-th zero of the Laguerre polynomial Lh(x) [149, Eq. (22.2.13)], and wi = li×
[
(h+ 1)Lh+1 (ki)

]−2
. Then, by substituting the conventional MGF of the Beckmann distribution given

in (G.9) with s = −1/(uγe) into (H.11), it follows that

GZ (γb, γe) =
e1/γe

ln 2

∫ 1

0

1

u
e−1/(uγe) e

− K(1+q2)γb
2γb+(1+K)(1+q2)uγe (1 +K)(1 + q2)(uγe)√(

2
γ−1

b

+ (1+q2)uγe

(1+K)−1

)(
2q2

γ−1
b

+ (1+q2)uγe

(1+K)−1

)

︸ ︷︷ ︸
f ′

2(u)

du, (H.19)

In order to solve the integral in (H.18), a change of variables u = 1 − e−w is performed, so that the

original integration limits are transformed of (0, 1) to (0,∞). Therefore, the integral in (H.18) can be

rewritten as

I5 =

∫ ∞

0

exp (−w) f2 (w) dw, (H.20)

where f2(w) = f ′
2(1−e−w). Again, making use of QLQ method [149, Eq. (25.4.45)], I5 can be closely

approximated by a weighted sum as

I5 ≈
r∑

i=1

wif2 (li) , (H.21)

where li, r and wi are defined in a similar way as in (H.18). Finally, by substituting (H.13), (H.16), and

(H.19) into (H.8), the RS−BR can be obtained as in (6.28). This completes the proof.

H.2.2 ASR∞
S-BR (γb → ∞)

Inserting (H.13) and (H.16) into (H.9), the asymptotic ASR for the Beckmann/Rayleigh case, i.e.,

R∞
S−BR can be approximated as in (6.29), which completes the proof.
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H.3 PROOF OF LEMMA 6

H.3.1 ASRS-NR

Employing the identity [168, Eq. (8.352.6)]

Υ(n, x) = (n− 1)!


1 − exp (−x)

n−1∑

z=0

xz

z!


 , (H.22)

for the lower incomplete gamma function in the squared Nakagami-m CDF given in (G.12), this leads

to

Fγb
(γ) = 1 − exp

(
−mγ

γb

)m−1∑

z=0

1

z!

(
mγ

γb

)z

. (H.23)

Substituting (H.23) into (2.9), it follows that

CB =
1

ln 2

m−1∑

z=0

1

z!

(
m

γb

)z ∫ ∞

0

γz
b

1 + γb
exp

(
−mγb

γb

)
dγb

︸ ︷︷ ︸
I6

. (H.24)

With the aid of [168, Eq. (3.353.5)], I6 can be evaluated in exact closed-form. Now, substituting the

exponential CDF given in (H.5) and the squared Nakagami-m CDF given in (H.23) into (2.11), this

yields

L (γb, γe) =
1

ln 2

m−1∑

z=0

1

z!

(
m

γb

)z ∫ ∞

0

γz
b

1 + γb
exp

(
−γb

(
m

γb

+
1

γe

))
dγb

︸ ︷︷ ︸
.

I7

(H.25)

Similar to the evaluation of I6, the identity [168, Eq. (3.353.5)] is used to calculate I7. Finally, by

combining (H.24) and (H.25) into (2.8), the RS−NR can be formulated as in (6.30), which concludes

the proof.

H.3.2 ASR∞
S-NR (γb → ∞)

Here, the goal is to find an asymptotic ASR expression as in (H.10) for the Nakagami/Rayleigh case.

Hence, from [181, Eq. (16)] by setting µα−µ = m and α = 2, the M(g) of the Nakagami-m distribution

needed in (2.14) can formulated as

M(g) =
Γ (m+ g)

mgΓ (m)
. (H.26)

Next, taking the derivative of (H.26) with respect to g, it follows that

M′

(g) =
Γ (g +m)

(
− ln(m) + ψ(g +m)

)

mgΓ(m)
(H.27)
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Then, by setting g = 0 in (H.27) and then substituting the resulting expression into (2.14), this gets to

t = − log2(e)
(
− ln(m) + ψ(m)

)
. (H.28)

Finally, by replacing (H.28) and (H.13) into (H.10), the R∞
S−NR is attained as in (6.31). This completes

the proof.
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I MATLAB CODE FOR BECKMANN CDF

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

- % CDF of the SNR Beckmann d i s t r i b u t i o n

- % D e f i n i t i o n s

- % omega : the mean power o f the SNR Beckman d i s t r i b u t i o n

5 % g : the random v a r i a b l e

- %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

- f u n c t i o n [ cdf ] = CDFBeckmann(K, q , omega , g )

- th0 =0;

- mu2=0;

10 mu1= s q r t (K*omega . / ( K+1) ) ;

- sigma2= s q r t (omega . / ( ( K+1) . * ( q .^2+1) ) ) ;

- sigma1=q* s q r t (omega . / ( ( K+1) . * ( q .^2+1) ) ) ;

- A= s q r t (mu1.^2+mu2. ^ 2 ) ;

- i n tegrand=@( the ta ) ( 1 . / ( 2 * fgamma( theta , sigma1 , sigma2 ) ) . * (1 − exp( − . . .

15 fgamma( theta , sigma1 , sigma2 ) . * g+ s q r t ( g ) . * f r ho (A, sigma1 , sigma2 , . . .

- th0 , the ta ) ) ) + f rho (A, sigma1 , sigma2 , th0 , the ta ) . * s q r t ( p i ) . / ( 4 . * . . .

- fgamma( theta , sigma1 , sigma2 ) . ^ ( 1 . 5 ) ) . * exp ( f r ho (A, sigma1 , . . .

- sigma2 , th0 , the ta ) . ^ 2 . / ( 4 . * fgamma( theta , sigma1 , sigma2 ) ) ) . * . . .

- ( e r f ( f r ho (A, sigma1 , sigma2 , th0 , the ta ) . / ( 2 * s q r t ( fgamma( theta , . . .

20 sigma1 , sigma2 ) ) ) ) + e r f ( ( 2 * fgamma( theta , sigma1 , sigma2 ) . * s q r t ( g ) . . .

- − f rho (A, sigma1 , sigma2 , th0 , the ta ) ) . / ( 2 . * s q r t ( fgamma( theta , . . .

- sigma1 , sigma2 ) ) ) ) ) ) ;

- cdf = 1 . / ( 2 * p i * sigma1 . * sigma2 ) . * exp( −A . ^ 2 . * fgamma( th0 , sigma1 , . . .

- sigma2 ) ) . * i n t e g r a l ( in tegrand ,0 ,2 * pi , ’ ArrayValued ’ , true ) ;

25 end

- f u n c t i o n z=fgamma( th , sigma1 , sigma2 )

- z=cos ( th ) . ^ 2 . / ( 2 * sigma1 . ^ 2 ) +s in ( th ) . ^ 2 . / ( 2 * sigma2 . ^ 2 ) ;

- end

- f u n c t i o n z= f rho (A, sigma1 , sigma2 , th0 , th )

30 z=A . * ( cos ( th ) . * cos ( th0 ) . / ( sigma1 . ^ 2 ) +s in ( th ) . * s in ( th0 ) . / ( sigma2 . ^ 2 ) ) ;

- end

xlviii



J MATLAB CODE FOR UPPER INCOMPLETE MOMENT

GENERATION FUNCTION OF THE BECKMANN DISTRI-

BUTION

1 f u n c t i o n y=uIMGFBeckmann (K, q , omega , s , z )

- %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

- %D e f i n i t i o n s

- %z : the random v a r i a b l e

5 %omega : the mean power o f the SNR Beckmann D i s t r i b u t i o n

- %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

- N=1e4 ;

- A=15;

- % Inverse Laplace Transform

10 C=exp (A/ 2 ) . / z ;

- a lpha inv = [0 .5 , ones (1 ,N−1) ] ;

- n=0:N−1;

- p=(A+2* p i *1 i *n ) / ( 2 * z ) ;

- y1=( −1) . ^ n . * a lpha inv . * r e a l ( 1 . / p . * MGFbeckmann(K, q , omega , s−p ) ) ;

15 y=C. * sum( y1 ) ;

- y=MGFbeckmann(K, q , omega , s ) −y ;

- end

- f u n c t i o n MGF = MGFbeckmann(K, q , omega , s )

- aux=exp (K. * ( 1 + q . ^ 2 ) . * omega . * s . / ( ( 1 + q . ^ 2 ) . * ( 1 +K) −2.*q . ^ 2 . * omega . * s ) ) ;

20 MGF=(1+q . ^ 2 ) . * ( 1 +K) . / ( s q r t ( (1+ q . ^ 2 ) . * ( 1 +K) −2.*q . ^ 2 . * omega . * s ) . * . . .

- s q r t ( (1+ q . ^ 2 ) . * ( 1 +K) −2*omega . * s ) ) . * aux ;

- end
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